August 12, 2021

Ben Dunbar, Environmental Health and Safety Manager
Glanbia Foods Inc Gooding
121 4th Avenue South
Twin Falls, ID 83301

RE: Facility ID No. 047-00008, Glanbia Foods Inc, Gooding
Final Permit Letter

Dear Mr. Dunbar:

The Department of Environmental Quality (DEQ) is issuing Permit to Construct (PTC) No. P-2010.0012 Project 62560 to Glanbia Foods Inc located at Gooding for the permit modification to increase the maximum heat ratings of Boilers 1 and 5. This PTC is issued in accordance with IDAPA 58.01.01.200 through 228 (Rules for the Control of Air Pollution in Idaho) and is based on the certified information provided in your PTC application received January 6, 2021, and supplemental information provided on April 1, 2021.

This permit is effective immediately and replaces PTC No. P-2010.0012 issued on July 12, 2016. This permit does not release Glanbia Foods Inc from compliance with all other applicable federal, state, or local laws, regulations, permits, or ordinances.

Pursuant to the Construction and Operation Notification General Provision of your permit, it is required that construction and operation notification be provided. Please provide this information as listed to DEQ’s Twin Falls Regional Office, 650 Addison Avenue West, Suite 110, Twin Falls, ID 83301, Fax (208) 736-2194.

In order to fully understand the compliance requirements of this permit, DEQ highly recommends that you schedule a permit handoff meeting with Bobby Dye, Regional Manager – Air Quality and Remediation, at (208) 736-2190 to review and discuss the terms and conditions of this permit. Should you choose to schedule this meeting, DEQ recommends that the following representatives attend the meeting: your facility’s plant manager, responsible official, environmental contact, and any other staff responsible for day-to-day compliance with permit conditions.
Pursuant to IDAPA 58.01.23, you, as well as any other entity, may have the right to appeal this final agency action within 35 days of the date of this decision. However, prior to filing a petition for a contested case, I encourage you to contact Kelli Wetzel at (208) 373-0502 or kelli.wetzel@deq.idaho.gov to address any questions or concerns you may have with the enclosed permit.

Sincerely,

[Signature]

Mike Simon
Stationary Source Bureau Chief
Air Quality Division

MS\kw

Permit No. P-2010.0012 PROJ 62560

Enclosures
Air Quality

PERMIT TO CONSTRUCT

Permittee: Glanbia Foods, Inc. Gooding
Permit Number: P-2010.0012
Project ID: 62560
Facility ID: 047-00008
Facility Location: 1728 S 2300 East
Gooding, ID 83330

Permit Authority
This permit (a) is issued according to the “Rules for the Control of Air Pollution in Idaho” (Rules), IDAPA 58.01.01.200–228; (b) pertains only to emissions of air contaminants regulated by the State of Idaho and to the sources specifically allowed to be constructed or modified by this permit; (c) has been granted on the basis of design information presented with the application; (d) does not affect the title of the premises upon which the equipment is to be located; (e) does not release the permittee from any liability for any loss due to damage to person or property caused by, resulting from, or arising out of the design, installation, maintenance, or operation of the proposed equipment; (f) does not release the permittee from compliance with other applicable federal, state, tribal, or local laws, regulations, or ordinances; and (g) in no manner implies or suggests that the Idaho Department of Environmental Quality (DEQ) or its officers, agents, or employees assume any liability, directly or indirectly, for any loss due to damage to person or property caused by, resulting from, or arising out of design, installation, maintenance, or operation of the proposed equipment. Changes in design, equipment, or operations may be considered a modification subject to DEQ review in accordance with IDAPA 58.01.01.200–228.

Date Issued: August 12, 2021

Kelli Wetzel, Permit Writer

Mike Simon, Stationary Source Bureau Chief
Contents

1. Permit Scope .. 3
2. Anaerobic Digester, Flare, and Three Natural Gas/Biogas Boilers .. 6
3. Two Full-Time Natural Gas-Fired Boilers ... 11
4. Lactose Production Line ... 13
5. Whey Protein Concentrate Bagging Line ... 16
6. Whey Powder Agglomeration Production Line (LUFT Facility) .. 19
7. Emergency Engine ... 22
8. General Provisions ... 28
1 Permit Scope

Purpose

1.1 This is a modified permit to construct (PTC) to correct the heat input rating of two existing boilers (Boiler 1 and Boiler 5) and include the NESHAP requirements for the emergency engine.

1.2 Those permit conditions that have been modified or revised by this permitting action are identified by the permit issue date citation located directly under the permit condition and on the right-hand margin.

1.3 This PTC replaces Permit to Construct No. P-2010.0012 issued on July 12, 2016.

Regulated Sources

Table 1.1 lists all sources of regulated emissions in this permit.

<table>
<thead>
<tr>
<th>Permit Section</th>
<th>Source</th>
<th>Control Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Anaerobic Digester:</td>
<td>Boilers 2, 3, and 5 and a flare</td>
</tr>
<tr>
<td></td>
<td>Biogas Production: 505,000 scf/day</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Biogas Flare:</td>
<td>None (considered an emission control device when</td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Varec Biogas</td>
<td>combusting biogas)</td>
</tr>
<tr>
<td></td>
<td>Model: No. 244 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 13.68 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: 2005</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Full-Time Boiler 2:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 25.1 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Cleaver Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model No.: CB600-600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial No.: L-90943</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuels: Natural gas/biogas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: July 1992</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Full-Time Boiler 3:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 25.1 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Cleaver Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model No.: CB600-600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial No.: L-79896</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuels: Natural gas/biogas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: December 1996</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Auxiliary Boiler 5:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Cleaver Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model No.: CB700-400-30H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 16.75 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuels: Natural gas/biogas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: 2005</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Full-Time Boiler 1:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 33.475 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Cleaver Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model No.: CB200-800-150</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuels: Natural gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: November 14, 2006</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Full-Time Boiler 4:</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Rated Heat Input: 25.1 MMBtu/hr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Cleaver Brooks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Model No.: CB600-600</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serial No.: L-79895</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuels: Natural gas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Date of Installation: December 1999</td>
<td></td>
</tr>
<tr>
<td>Permit Section</td>
<td>Source</td>
<td>Control Equipment</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4</td>
<td>Lactose Production Line Primary Dryer: Manufacturer: Relco</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Design Capacity: 11,500 lb/hr of total solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. Steam Usage Rate: 3,996 lb/hr</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lactose Receiving Baghouse: Manufacturer: NIRO</td>
<td>None, the baghouse is process equipment used for product recovery</td>
</tr>
<tr>
<td></td>
<td>Model #: 96LRT08 Style III</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Type: Reverse pulse jet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of Bags: 75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bag Type: polyester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air to Cloth: 4.53 ft/min</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lactose Primary Dryer Baghouse: Manufacturer: Relco</td>
<td>None, the baghouse is process equipment used for product recovery</td>
</tr>
<tr>
<td></td>
<td>Type: Reverse pulse jet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of Bags: 230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bag Type: polyester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air to Cloth: 6.24 ft/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Efficiency: 99.99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain Loading: 0.009 gr/scf</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Lactose Secondary Fluidized Bed Dryer Manufacturer: Relco</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Design Capacity: 11,500 lb/hr of total solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Max. Steam Usage Rate: 3,996 lb/hr</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fluidized Bed Dryer Baghouse Manufacturer: Relco</td>
<td>None, the baghouse is process equipment used for product recovery</td>
</tr>
<tr>
<td></td>
<td>Type: Reverse pulse jet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of Bags: 180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bag Type: polyester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air to Cloth: 6.17 ft/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Efficiency: 99.99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain Loading: 0.031 gr/scf</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mill Receiving Baghouse Baghouse: MRECBH Manufacturer: Relco</td>
<td>None, the baghouse is process equipment used for product recovery</td>
</tr>
<tr>
<td></td>
<td>Type: Reverse pulse jet</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air to Cloth: 6.31 ft/min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Control Efficiency: 99.99%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design Capacity: 11,500 lb/hr of total solids</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain Loading: 0.119 gr/scf</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Powder Handling, Three Powder Bins Bin 1 Mfg.: Niro</td>
<td>Baghouse PBINBH</td>
</tr>
<tr>
<td></td>
<td>Bin Capacity: 2,850 ft³</td>
<td>Manufacturer: Relco</td>
</tr>
<tr>
<td></td>
<td>Bin 2 Mfg.: Niro</td>
<td>Type: Reverse pulse jet</td>
</tr>
<tr>
<td></td>
<td>Bin Capacity: 2,850 ft³</td>
<td>Bag Type: polyester</td>
</tr>
<tr>
<td></td>
<td>Bin 3 Mfg.: Niro</td>
<td>Air to Cloth: 6.90 ft/min</td>
</tr>
<tr>
<td></td>
<td>Bin Capacity: 2,850 ft³</td>
<td>Control Efficiency: 99.99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grain Loading: 0.093 gr/dscf (100 mesh), 0.139 gr/dscf (200 mesh)</td>
</tr>
<tr>
<td>4</td>
<td>Two Lactose Surge Hoppers Manufacturer: Relco</td>
<td>Baghouse WPCSCRBH</td>
</tr>
<tr>
<td></td>
<td>Max Capacity: 17,600 lb/hr solids output (from both hoppers combined)</td>
<td>Manufacturer: Relco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type: Reverse pulse jet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bag Type: polyester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air to Cloth: 6.89 ft/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Control Efficiency: 99.99%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grain Loading: 0.139 gr/dscf</td>
</tr>
<tr>
<td>4</td>
<td>Lactose Sifter Receiver Baghouse Manufacturer: Relco</td>
<td>Baghouse PDRYBH</td>
</tr>
<tr>
<td></td>
<td>Max Capacity: 17,600 lb/hr among the total solids go to baghouse</td>
<td>Manufacturer: Relco</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Type: Reverse pulse jet</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bag Type: polyester</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Air to Cloth: 5.77 ft/min</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grain Loading: 0.182 gr/dscf</td>
</tr>
<tr>
<td>Permit Section</td>
<td>Source</td>
<td>Control Equipment</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 5 | WPC Surge Hopper
Surge Hopper: Niro
Max Capacity: 13,200 lb/hr solids output | Baghouse WPCSCRBH
Manufacturer: Donaldson Co., Inc.
Type: Reverse pulse jet
Bag Type: polyester
Air to Cloth: 7.7 ft/min
Grain Loading: 0.0044 gr/dscf |
| 5 | WPC Bagging Line
Surge Hopper: Niro
Max Capacity: 10 lb/hr among the total solids go to baghouse | Baghouse WPCNUSBH
Manufacturer: Donaldson Co., Inc.
Type: Reverse pulse jet
Bag Type: polyester
Air to Cloth: 7.7 ft/min
Grain Loading: 0.0044 gr/dscf |
| 6 | Agglomerated Line/ LUFT Facility
Max Capacity: 3,000 lb/hr | Baghouse LUFTBH
Manufacturer: Custom Fabricating & Repair
Type: pulse jet
Bag Type: polyester micro denier
Air to Cloth: 5.0 ft/min
Grain Loading: 0.01 gr/dscf |
| 7 | Emergency Engine
Manufacturer: Cummins
Model: No. VTA28-G5
Rated Horsepower: 600 hp
Fuel: Diesel
Manufacture Date: 1996 | None |
2 Anaerobic Digester, Flare, and Three Natural Gas/Biogas Boilers

2.1 Process Description

Process water used for processing cheese and whey is treated by screening, clarifying, and settling. An anaerobic digester is used to further treat the water prior to discharging for land application. The digester generates biogas that is burned in three biogas/natural gas-fired hot water boilers. There are two full-time boilers, Boilers 2 and 3, and an auxiliary boiler, Boiler 5. In the event that either the two full-time boilers or the auxiliary boiler is incapable of burning biogas, it is combusted by the flare. If not enough biogas is available to fire the three boilers, natural gas is used as the fuel for the two full-time boilers (Boilers 2 and 3) and for the auxiliary boiler (Boiler 5), and all of the biogas is combusted in the flare.

The flare incinerates biogas exclusively and has a natural gas-fired pilot flame and a thermocouple (or a similar device) that detects the presence of a flame in the flare. The flare also has an alarm that notifies the operator in the case of a flameout. The flare, the full-time boilers, Boilers 2 and 3, and the auxiliary boiler, Boiler 5, can be fired on biogas simultaneously.

2.2 Control Device Descriptions

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anaerobic Digester</td>
<td>Flare</td>
</tr>
<tr>
<td>Biogas Flare</td>
<td>None (Considered an emission control device when combusting biogas)</td>
</tr>
<tr>
<td>Full-Time Boiler 2</td>
<td>None (Considered an emission control device when combusting biogas)</td>
</tr>
<tr>
<td>Full-Time Boiler 3</td>
<td>None (Considered an emission control device when combusting biogas)</td>
</tr>
<tr>
<td>Auxiliary Boiler 5</td>
<td>None (Considered an emission control device when combusting biogas)</td>
</tr>
</tbody>
</table>

Emission Limits

2.3 Emission Limits

The PM$_{10}$ and SO$_2$ emissions from the biogas flare, full-time boilers 2 and 3, and the auxiliary boiler 5 stacks shall not exceed any corresponding emissions rate limits listed in Table 2.2.
Table 2.2 Anaerobic Digester, Flare, and Natural Gas/Biogas Boilers Emission Limits\(^{(a)}\)

<table>
<thead>
<tr>
<th>Source Description</th>
<th>(\text{PM}_{10})(^{(b)})</th>
<th>(\text{SO}_2) (^{(a)})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/hr (^{(c)}) T/yr (^{(d)})</td>
<td>lb/hr (^{(c)}) T/yr (^{(d)})</td>
</tr>
<tr>
<td>Biogas Flare, Single Fuel-Fired (Biogas Combustion)</td>
<td>0.10 0.43</td>
<td>5.57 24.40</td>
</tr>
<tr>
<td>Full-Time Boiler 2, Dual Fuel-Fired (Natural Gas Combustion)</td>
<td>0.17 0.76</td>
<td>0.03 0.13</td>
</tr>
<tr>
<td>Full-Time Boiler 2, Dual Fuel-Fired (Biogas Combustion)</td>
<td>0.09 0.40</td>
<td>3.53 15.46</td>
</tr>
<tr>
<td>Full-Time Boiler 3, Dual Fuel-Fired (Natural Gas Combustion)</td>
<td>0.17 0.76</td>
<td>0.03 0.13</td>
</tr>
<tr>
<td>Full-Time Boiler 3, Dual Fuel-Fired (Biogas Combustion)</td>
<td>0.09 0.40</td>
<td>3.53 15.46</td>
</tr>
<tr>
<td>Auxiliary Boiler 5, Dual Fuel-Fired (Natural Gas and Biogas Combustion)</td>
<td>0.14 0.60</td>
<td>7.67 33.64</td>
</tr>
</tbody>
</table>

\(a\) In absence of any other credible evidence, compliance is ensured by complying with permit operating, monitoring, and record keeping requirements.
\(b\) Particulate matter with an aerodynamic diameter less than or equal to a nominal ten (10) micrometers, including condensable particulate as defined in IDAPA 58.01.01.006.
\(c\) Pounds per hour, as determined by a test method prescribed by IDAPA 58.01.01.157, EPA reference test method, continuous emission monitoring system (CEMS) data, or DEQ-approved alternative.
\(d\) Tons per any consecutive 12-calendar month period.

2.4 \(\text{H}_2\text{S} \) Concentration Limit

The average annual concentration of hydrogen sulfide (\(\text{H}_2\text{S}\)) of the biogas entering the flare, full-time boilers 2 and 3, and the auxiliary boiler 5 shall not exceed 1,799 ppmv.

2.5 Opacity Limit

Emissions from the biogas flare, full-time boilers 2 and 3, and the auxiliary boiler 5 stacks, or any other stack, vent, or functionally equivalent opening associated with the biogas flare, full-time boilers 2 and 3, and the auxiliary boiler 5, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

2.6 Grain Loading Limit

The permittee shall not discharge to the atmosphere from full-time boilers 2 and 3 and the auxiliary boiler 5 stacks PM in excess of 0.015 gr/dscf of effluent gas corrected to 3% oxygen by volume for gas, as required by IDAPA 58.01.01.676.

2.7 Odors

No person shall allow, suffer, cause, or permit the emission of odorous gases, liquids, or solids into the atmosphere in such quantities as to cause air pollution in accordance with IDAPA 58.01.01.776.01.

Operating Requirements

2.8 Biogas Production Limit

Biogas production from the anaerobic digester shall not exceed 505,000 scf per day, based on the average scf produced per day per any consecutive 12-month period.

2.9 Biogas Combustion

Facility generated biogas produced from the on-site anaerobic digester shall only be combusted in the biogas flare, full-time boilers 2 and 3, or the auxiliary boiler 5.
2.10 **Allowable Fuel Types**

The flare shall only combust biogas as fuel. The full-time boilers 2 and 3 shall only combust biogas or natural gas as fuel. The auxiliary boiler 5 shall only combust biogas or natural gas as fuel.

[07/12/2016]

2.11 **Flare Pilot Flame and Alarm**

The flare shall be operated with a pilot flame present when the anaerobic digester is operating. In the event of a flame failure, the permittee shall follow a standard operating procedure to reinitiate the pilot flame as expeditiously as practicable.

In addition, the flare shall be operated with a thermocouple or similar device that detects the presence of a flame in the biogas flare. This device shall be calibrated according to manufacturer’s specifications and recommended schedule and shall be operated at all times when the flare is operating. The flare shall also be operated with an alarm that notifies the operator in the case of a flameout. The permittee shall follow the excess emissions procedures in IDAPA 58.01.01.130-136 in the event of an excess emissions event caused by the biogas flare.

Monitoring and Recordkeeping Requirements

2.12 **NSPS-Subpart Dc Applicability Notification, Monitoring, Reporting and Recordkeeping Requirements (Boilers 2, 3 and 5)**

In accordance with 40 CFR 60.48c(a), the permittee shall submit notification of the date of construction or reconstruction, anticipated startup, and actual startup as required by 40 CFR 60.7 for the full-time boilers 2 and 3 and the auxiliary boiler 5.

The notification shall include the following:

- The design heat input capacity of the affected facility,
- Fuels to be combusted in the affected facility, and
- The annual capacity factor at which the permittee anticipates operating the affected facility based on all fuels fired and based on each fuel fired.

The monitoring and recordkeeping of fuels combusted in the boilers (boilers 2, 3 and 5) shall comply with 40 CFR 60.48c(g).

2.13 **Hydrogen Sulfide Monitoring**

Unless an alternative monitoring and recordkeeping method is approved by DEQ, the permittee shall comply with the following requirements:

The permittee shall install, calibrate, maintain, and operate an H$_2$S gas monitor that shall be placed downstream of the digester, and upstream of the full-time boilers 2 and 3, the auxiliary boiler 5, and the biogas flare, to measure the H$_2$S concentrations in the biogas produced by the anaerobic digesters. The monitor shall be installed in accordance with the manufacturer specifications. Draeger® tubes may be used in lieu of an H$_2$S monitor.

If an H$_2$S monitor is installed in lieu of Draeger® tubes, calibration of the H$_2$S monitor shall be performed and recorded in accordance with the O&M manual and no less frequently than semi-annually if the meter is in service. If the meter is out of service, the meter must be cleaned and calibrated before being put into service.

The measured H$_2$S concentrations from the H$_2$S monitor or Draeger® tubes shall be recorded once per week in units of ppmV.
Monitoring and recordkeeping of \(\text{H}_2\text{S} \) concentrations shall occur during each calendar week of operations. Monthly monitoring may be conducted in lieu of weekly monitoring, provided that 24 consecutive weeks of monitoring do not exceed 90% of the \(\text{H}_2\text{S} \) limit permit condition. If any one measurement during monthly monitoring equals or exceeds 90% of the \(\text{H}_2\text{S} \) limit permit condition, then monitoring frequency shall revert to each calendar week until the 24 consecutive weeks of monitoring do not equal or exceed 90% of the \(\text{H}_2\text{S} \) limit permit condition. When conducting monthly monitoring, Draeger® tubes may be used to collect a sample in lieu of the \(\text{H}_2\text{S} \) monitor. Samples must be collected downstream of the digesters and upstream of the boilers and biogas flares. Records of this information shall be maintained on site and be made available to DEQ representatives upon request and in accordance with the General Provisions.

[08/12/2021]

2.14 Biogas Flowrate Monitoring

When combusting biogas in the boilers, the permittee shall install, calibrate, maintain and operate a biogas flow monitor(s) placed downstream of the digester, and upstream of the full-time boilers 2 and 3, the auxiliary boiler 5, and the biogas flare to determine the quantity of biogas produced by the digesters. The monitors shall be installed, operated, and maintained in accordance with the manufacturer specifications.

Calibration of the biogas flow meter shall be performed and recorded in accordance with the O&M manual.

[08/12/2021]

2.15 Operations and Maintenance Manual

The permittee shall maintain an operations and maintenance (O&M) manual on site at all times which describes the procedures that will be followed to maintain good working order and assure operation as efficiently as practical for the \(\text{H}_2\text{S} \) monitor or Draeger® tubes and the pilot flame detector. The procedures and specifications described in the O&M manual shall address, at a minimum, the following topics:

Biogas Flow-rate Monitor
- Standard operational procedure for flow-rate sampling
- Frequency and method of calibration
- Flow rate measurement range

\(\text{H}_2\text{S} \) Monitor or Draeger® Tubes
- Standard operational procedure for \(\text{H}_2\text{S} \) concentration sampling
- Frequency and method of calibration
- \(\text{H}_2\text{S} \) concentration measurement range

Pilot Flame Detector
- Method of ensuring continuous operation
- Procedure for pilot flame re-ignition

All records shall be maintained on-site for a period of 5 years, shall be made available to DEQ representatives upon request, and shall be maintained in accordance with the General Provisions.

The contents of the O&M manual shall be based on manufacturer’s specifications for each piece of equipment. A copy of the manufacturer’s recommendations shall be included with the O & M manual, and both shall be made available to DEQ representatives upon request.
Any changes to the O&M Manual shall be submitted to DEQ within 15 days of the change.

2.16 Recordkeeping Requirement

The permittee shall comply with the recordkeeping requirements of the recordkeeping General Provision.
3 Two Full-Time Natural Gas-Fired Boilers

3.1 Process Description

Two boilers provide steam and hot water to the manufacturing processes at the facility. The two boilers combust natural gas exclusively.

3.2 Control Device Descriptions

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-Time Boiler 1</td>
<td>None</td>
</tr>
<tr>
<td>Full-Time Boiler 4</td>
<td>None</td>
</tr>
</tbody>
</table>

Emission Limits

3.3 Emission Limits

The emissions from the full-time boilers 1 and 4 stacks shall not exceed any corresponding emissions rate limits listed in Table 3.2.

<table>
<thead>
<tr>
<th>Source Description</th>
<th>PM₁₀⁽ᵇ⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/hr⁽ᵃ⁾</td>
</tr>
<tr>
<td>Full-Time Boiler 1, Single Fuel Fired (Natural Gas Combustion)</td>
<td>0.24</td>
</tr>
<tr>
<td>Full-Time Boiler 4, Single Fuel Fired (Natural Gas Combustion)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

[a) In absence of any other credible evidence, compliance is ensured by complying with permit operating, monitoring, and record keeping requirements.

[b) Particulate matter with an aerodynamic diameter less than or equal to a nominal ten (10) micrometers, including condensable particulate as defined in IDAPA 58.01.01.676.

c) Pounds per hour, as determined by a test method prescribed by IDAPA 58.01.01.157, EPA reference test method, continuous emission monitoring system (CEMS) data, or DEQ-approved alternative.

d) Tons per any consecutive 12-calendar month period.

[08/12/2021]

3.4 Grain Loading Limit

The permittee shall not discharge to the atmosphere from full-time boilers 1 and 4 stacks PM in excess of 0.015 gr/dscf of effluent gas corrected to 3% oxygen by volume for gas, as required by IDAPA 58.01.01.676.

3.5 Opacity Limit

Emissions from the full-time boilers 1 and 4 stacks, or any other stack, vent, or functionally equivalent opening associated with the full-time boilers 1 and 4, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

Operating Requirements

3.6 Allowable Fuel

Boilers 1 and 4 shall only combust natural gas as fuel.
Monitoring and Recordkeeping Requirements

3.7 NSPS-Subpart Dc Applicability Notification, Monitoring, Reporting and Recordkeeping Requirements (Boilers 1 and 4)

In accordance with 40 CFR 60.48c(a), the permittee shall submit notification of the date of construction or reconstruction, anticipated startup, and actual startup as required by 40 CFR 60.7 for Boilers 1 and 4.

The notification shall include the following:

- The design heat input capacity of the affected facility,
- Fuels to be combusted in the affected facility, and
- The annual capacity factor at which the permittee anticipates operating the affected facility based on all fuels fired and based on each fuel fired.

The monitoring and recordkeeping of fuels combusted in the boilers (boilers 1 and 4) shall comply with 40 CFR 60.48c(g).

3.8 Recordkeeping Requirement

The permittee shall comply with the recordkeeping requirements of the recordkeeping General Provision.
4 Lactose Production Line

4.1 Process Description

The Glanbia Gooding facility produces whey powder from the lactose production line. Lactose whey is produced through a multi-step process starting from evaporation of raw milk into crystallizers to a series of refiners before entering a drying cycle. A primary dryer utilizes steam heat to carry lactose particles to a cyclone. Lactose particles are discharged from the cyclone to a fluidized bed dryer for final drying. Fine lactose particles are carried in the airstreams from the primary and fluidized bed dryers to their corresponding baghouses and the mill receiving baghouse for product recovery. Most of the lactose particles are discharged from the fluidized bed to a conveying line for transport to lactose powder bins. Lactose whey is temporarily stored in the powder bins and eventually is transferred through a surge hopper to the lactose bagging line where the finished product is received for packaging. A relatively small amount of fine whey particulate matter will emit to the atmosphere through the new baghouses associated with three lactose powder bins and two surge hoppers.

4.2 Control Device Descriptions

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
<th>Emission Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactose Production Line</td>
<td>N/A</td>
<td>LACBAG</td>
</tr>
<tr>
<td>Lactose Receiving Baghouse</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Lactose Primary Dryer</td>
<td>N/A</td>
<td>PDRYBH</td>
</tr>
<tr>
<td>Lactose Primary Dryer Baghouse</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Lactose Secondary Fluidized Bed Dryer</td>
<td>N/A</td>
<td>FBEDBH</td>
</tr>
<tr>
<td>Lactose Secondary Fluidized Bed Dryer Baghouse</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Milling Process, Mill Receiving Baghouse</td>
<td>N/A</td>
<td>MRECBH</td>
</tr>
<tr>
<td>Three Powder Bins</td>
<td>Powder Bins Baghouse</td>
<td>PBINBH</td>
</tr>
<tr>
<td>Two Lactose Surge Hoppers</td>
<td>Two Lactose Surge Hoppers Baghouses</td>
<td></td>
</tr>
<tr>
<td>Lactose Sifter Receiver</td>
<td>Lactose Sifter Receiver Baghouse</td>
<td>LACRECBH</td>
</tr>
</tbody>
</table>

Emission Limits

4.3 PM$_{10}$ Emission Limits

The PM$_{10}$ emissions from the stack of the lactose receiving baghouse shall not exceed 18.24 lb/day.

The PM$_{10}$ emissions from the stack of lactose primary dryer baghouse shall not exceed 29.04 lb/day.

The PM$_{10}$ emissions from the stack of lactose secondary fluidized bed dryer baghouse shall not exceed 40.80 lb/day.

The PM$_{10}$ emissions from the stack of the mill-receiving baghouse shall not exceed 26.88 lb/day.

The PM$_{10}$ emissions from the stack of powder bins baghouse shall not exceed 20.88 lb/day.

The PM$_{10}$ emissions from the stack of lactose surge hopper baghouses and the lactose sifter receiver baghouse combined shall not exceed 29.28 lb/day.
a) In absence of any other credible evidence, compliance is ensured by complying with permit operating, monitoring, and record keeping requirements.

b) Particulate matter with an aerodynamic diameter less than or equal to a nominal ten (10) micrometers, including condensable particulate as defined in IDAPA 58.01.01.006.

4.4 Opacity Limit

Emissions from each of the baghouses (lactose receiving baghouse, lactose primary dryer baghouse, the lactose secondary fluidized bed dryer baghouse, the mill receiving baghouses, the powder bins baghouse, the lactose surge hoppers baghouses, the lactose sifter receiver baghouse) stacks, or any other stack, vent, or functionally equivalent opening associated with the baghouses (lactose receiving baghouse, lactose primary dryer baghouse, the lactose secondary fluidized bed dryer baghouse, the mill receiving baghouses, the powder bins baghouse, the lactose surge hoppers baghouses, or the lactose sifter receiver baghouse), shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

Operating Requirements

4.5 Operating Requirements for the Baghouses

The permittee shall install and operate baghouses to control PM and PM$_{10}$ emissions from the lactose production line, the lactose primary dryer, the lactose secondary fluidized bed dryer, the milling operation, the three powder bins, the two lactose surge hoppers, and the lactose sifter receiver processes.

4.6 Baghouse/Filter System Procedures

For the lactose primary dryer baghouse, the fluidized bed dryer baghouse, the lactose receiving baghouse, the mill receiving baghouse, the three powder bin baghouses, or the two lactose surge hopper baghouses:

The permittee shall maintain a Baghouse/Filter System Procedures document for the inspection and operation of the baghouses/filter system which controls emissions from the process. The Baghouse/Filter System Procedures document shall be a permittee-developed document independent of the manufacturer-supplied operating manual but may include summaries of procedures included in the manufacturer-supplied operating manual.

The Baghouse/Filter System Procedures document shall describe the procedures that will be followed to comply with General Provision 8.2 and shall contain requirements for weekly see/no-see visible emissions inspections of the baghouse. The inspection shall occur during daylight hours and under normal operating conditions.

The Baghouse/Filter System Procedures document shall also include a schedule and procedures for corrective action that will be taken if visible emissions are present from the baghouse at any time. At a minimum the document shall include:

- Procedures to determine if bags or cartridges are ruptured; and
- Procedures to determine if bags or cartridges are not appropriately secured in place.

The permittee shall maintain records of the results of each baghouse/filter system inspection in accordance with General Provision 8.10. The records shall include a description of whether visible emissions were present and if visible emissions were present, a description of the corrective action that was taken.
The Baghouse/Filter System Procedures document shall be maintained and shall contain a certification by a responsible official. Any changes to the Baghouse/Filter System Procedures document shall be submitted to DEQ within 15 days of the change.

The Baghouse/Filter System Procedures document shall also remain on site at all times and shall be made available to DEQ representatives upon request.

The operating and monitoring requirements specified in the Baghouse/Filter System Procedures document are incorporated by reference to this permit and are enforceable permit conditions.

The permittee shall submit the Baghouse/Filter System Procedures document to the following address:

Air Quality Permit Compliance
Department of Environmental Quality
Twin Falls Regional Office
650 Addison Avenue West, Suite 110
Twin Falls, Idaho 83301
Phone: (208) 736-2190 Fax: (208) 736-2194

[07/12/2016]

4.7 Lactose Receiving Baghouse Operation Requirement

The permittee shall replace all the bags in the lactose receiving baghouse every six months, or a different frequency proposed by the permittee and approved by DEQ.

Monitoring and Recordkeeping Requirements

4.8 Visible Emissions Monitoring

To demonstrate compliance with the Opacity Limit Permit Condition, the permittee shall conduct a weekly inspection of potential sources of visible emissions for the lactose production line, during daylight hours and under normal operating conditions. The inspection shall consist of a see/no see evaluation for each potential source of visible emissions. If any visible emissions are present from any point of emission, the permittee shall either take appropriate corrective action as expeditiously as practicable, or perform a Method 9 opacity test in accordance with the procedures outlined in IDAPA 58.01.01.625. A minimum of 30 observations shall be recorded when conducting the opacity test. If opacity is greater than 20%, as measured using Method 9, for a period or periods aggregating more than three minutes in any 60-minute period, the permittee shall take all necessary corrective action and report the exceedance in accordance with IDAPA 58.01.01.130-136. The permittee shall maintain records of the results of each visible emission inspection and each opacity test when conducted. The records shall include, at a minimum, the date and results of each inspection and test and a description of the following: the permittee’s assessment of the conditions existing at the time visible emissions are present (if observed), any corrective action taken in response to the visible emissions, and the date corrective action was taken.

4.9 Recordkeeping Requirement

The permittee shall comply with the recordkeeping requirements of the recordkeeping General Provision.
5 Whey Protein Concentrate Bagging Line

5.1 Process Description
The dedicated WPC bagging line will allow finished WPC to be packaged more efficiently. Dried WPC is transferred to WPC powder bins. (The WPC powder bins are enclosed within the building.) Finished WPC is transferred from the WPC powder bins to the WPC surge hopper and then to the new WPC bagging line. The WPC process line and lactose process line will utilize the same piping and feed system for bulk packaging.

5.2 Control Device Descriptions

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
<th>Emission Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPC Surge Hopper</td>
<td>WPC Surge Hopper Baghouse</td>
<td>WPCSRGBH</td>
</tr>
<tr>
<td>WPC Bagging Line</td>
<td>WPC Nuisance Baghouse</td>
<td>WPCNUSBH</td>
</tr>
</tbody>
</table>

Emission Limits

5.3 Emission Limits
The PM$_{10}$ emissions from the stack of the WPC nuisance baghouse shall not exceed 2.64 lb/day.
The PM$_{10}$ emissions from the stack of the WPC surge hopper baghouse shall not exceed 0.71 lb/day.

5.4 Opacity Limit
Emissions from the WPC surge hopper baghouse and the WPC nuisance baghouse stack, or any other stack, vent, or functionally equivalent opening associated with the WPC surge hopper baghouse and the WPC nuisance baghouse, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

Operating Requirements

5.5 Operating Requirements for the Baghouses
The permittee shall install and operate baghouses to control PM and PM$_{10}$ emissions from the WPC surge hopper and the WPC bagging line processes.

5.6 Baghouse/Filter System Procedures
For the WPC surge hopper baghouse and the WPC nuisance baghouse:
The permittee shall maintain a Baghouse/Filter System Procedures document for the inspection and operation of the baghouses/filter system which controls emissions from the process. The Baghouse/Filter System Procedures document shall be a permittee-developed document independent of the manufacturer-supplied operating manual but may include summaries of procedures included in the manufacturer-supplied operating manual.
The Baghouse/Filter System Procedures document shall describe the procedures that will be followed to comply with General Provision 8.2 and shall contain requirements for weekly see/no-see visible emissions inspections of the baghouse. The inspection shall occur during daylight hours and under normal operating conditions.
The Baghouse/Filter System Procedures document shall also include a schedule and procedures for corrective action that will be taken if visible emissions are present from the baghouse at any time. At a minimum the document shall include:

- Procedures to determine if bags or cartridges are ruptured; and
- Procedures to determine if bags or cartridges are not appropriately secured in place.

The permittee shall maintain records of the results of each baghouse/filter system inspection in accordance with General Provision 8.10. The records shall include a description of whether visible emissions were present and if visible emissions were present, a description of the corrective action that was taken.

The Baghouse/Filter System Procedures document shall be maintained and shall contain a certification by a responsible official. Any changes to the Baghouse/Filter System Procedures document shall be submitted to DEQ within 15 days of the change.

The Baghouse/Filter System Procedures document shall also remain on site at all times and shall be made available to DEQ representatives upon request.

The operating and monitoring requirements specified in the Baghouse/Filter System Procedures document are incorporated by reference to this permit and are enforceable permit conditions.

The permittee shall submit the Baghouse/Filter System Procedures document to the following address:

Air Quality Permit Compliance
Department of Environmental Quality
Twin Falls Regional Office
650 Addison Avenue West, Suite 110
Twin Falls, Idaho 83301
Phone: (208) 736-2190 Fax: (208) 736-2194

[07/12/2016]

Monitoring and Recordkeeping Requirements

5.7 Visible Emissions Monitoring

To demonstrate compliance with the Opacity Limit Permit Condition, the permittee shall conduct a weekly inspection of potential sources of visible emissions for whey protein concentrate bagging line during daylight hours and under normal operating conditions. The inspection shall consist of a see/no see evaluation for each potential source of visible emissions. If any visible emissions are present from any point of emission, the permittee shall either take appropriate corrective action as expeditiously as practicable, or perform a Method 9 opacity test in accordance with the procedures outlined in IDAPA 58.01.01.625. A minimum of 30 observations shall be recorded when conducting the opacity test. If opacity is greater than 20%, as measured using Method 9, for a period or periods aggregating more than three minutes in any 60-minute period, the permittee shall take all necessary corrective action and report the exceedance in accordance with IDAPA 58.01.01.130-136. The permittee shall maintain records of the results of each visible emission inspection and each opacity test when conducted. The records shall include, at a minimum, the date and results of each inspection and test and a description of the following: the permittee’s assessment of the conditions existing at the time visible emissions are present (if observed), any corrective action taken in response to the visible emissions, and the date corrective action was taken.
5.8 Recordkeeping Requirement

The permittee shall comply with the recordkeeping requirements of the recordkeeping General Provision.
6 Whey Powder Agglomeration Production Line (LUFT Facility)

6.1 Process Description
WPC and WPI powder are transferred to the LUFT facility via a blower line and stored in surge hoppers. A screw conveyor controls the amount of powder entering the rewet chamber. Wet, agglomerated powder then enters the fluidized bed dryer where agglomerated particles are dried. Emissions from the rewet chamber and the dryer are directed to the baghouse. The final product is packaged directly into 25 kg bags.

6.2 Control Device Descriptions

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
<th>Emission Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whey Powder Agglomeration Line</td>
<td>LUFT Facility Baghouse</td>
<td>LUFTBH</td>
</tr>
</tbody>
</table>

Emission Limits

6.3 Emission Limit for PM$_{10}$
The PM$_{10}$ emissions from the stack of the LUFT facility baghouse shall not exceed 18.24 lb/day.

[07/12/2016]

6.4 Opacity Limit
Emissions from the LUFT facility baghouse stack, or any other stack, vent, or functionally equivalent opening associated with the LUFT facility baghouse, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

[07/12/2016]

Operating Requirements

6.5 Operating Requirement for the Baghouse
The permittee shall install and operate a baghouse to control PM and PM$_{10}$ emissions from the whey powder agglomeration line or LUFT facility.

[07/12/2016]

6.6 Baghouse/Filter System Procedures
For the LUFT facility baghouse:
The permittee shall maintain a Baghouse/Filter System Procedures document for the inspection and operation of the baghouse/filter system which controls emissions from the process. The Baghouse/Filter System Procedures document shall be a permittee-developed document independent of the manufacturer-supplied operating manual but may include summaries of procedures included in the manufacturer-supplied operating manual.

The Baghouse/Filter System Procedures document shall describe the procedures that will be followed to comply with General Provision 8.2 and shall contain requirements for weekly see/no-see visible emissions inspections of the baghouse. The inspection shall occur during daylight hours and under normal operating conditions.
The Baghouse/Filter System Procedures document shall also include a schedule and procedures for corrective action that will be taken if visible emissions are present from the baghouse at any time. At a minimum the document shall include:

- Procedures to determine if bags or cartridges are ruptured; and
- Procedures to determine if bags or cartridges are not appropriately secured in place.

The permittee shall maintain records of the results of each baghouse/filter system inspection in accordance with General Provision 8.10. The records shall include a description of whether visible emissions were present and if visible emissions were present, a description of the corrective action that was taken.

The Baghouse/Filter System Procedures document shall be maintained and shall contain a certification by a responsible official. Any changes to the Baghouse/Filter System Procedures document shall be submitted to DEQ within 15 days of the change.

The Baghouse/Filter System Procedures document shall also remain on site at all times and shall be made available to DEQ representatives upon request.

The operating and monitoring requirements specified in the Baghouse/Filter System Procedures document are incorporated by reference to this permit and are enforceable permit conditions.

The permittee shall submit the Baghouse/Filter System Procedures document to the following address:

Air Quality Permit Compliance
Department of Environmental Quality
Twin Falls Regional Office
650 Addison Avenue West, Suite 110
Twin Falls, Idaho 83301
Phone: (208) 736-2190 Fax: (208) 736-2194

[07/12/2016]

Monitoring and Recordkeeping Requirements

6.7 Visible Emissions Monitoring

To demonstrate compliance with the Opacity Limit Permit Condition, the permittee shall conduct a weekly inspection of potential sources of visible emissions for whey protein concentrate bagging line during daylight hours and under normal operating conditions. The inspection shall consist of a see/no see evaluation for each potential source of visible emissions. If any visible emissions are present from any point of emission, the permittee shall either take appropriate corrective action as expeditiously as practicable, or perform a Method 9 opacity test in accordance with the procedures outlined in IDAPA 58.01.01.625. A minimum of 30 observations shall be recorded when conducting the opacity test. If opacity is greater than 20%, as measured using Method 9, for a period or periods aggregating more than three minutes in any 60-minute period, the permittee shall take all necessary corrective action and report the exceedance in accordance with IDAPA 58.01.01.130-136. The permittee shall maintain records of the results of each visible emission inspection and each opacity test when conducted. The records shall include, at a minimum, the date and results of each inspection and test and a description of the following: the permittee’s assessment of the conditions existing at the time visible emissions are present (if observed), any corrective action taken in response to the visible emissions, and the date corrective action was taken.

[07/12/2016]
6.8 Recordkeeping Requirement

The permittee shall comply with the recordkeeping requirements of the recordkeeping General Provision.

[07/12/2016]
7 Emergency Engine

7.1 Process Description

The compression ignition IC engine at the facility is used to provide power in an emergency situation.

7.2 Control Device Descriptions

Table 7.1 Emergency Engine Description

<table>
<thead>
<tr>
<th>Emissions Units / Processes</th>
<th>Control Devices</th>
<th>Emission Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Engine</td>
<td>None</td>
<td>IC engine exhaust stack</td>
</tr>
</tbody>
</table>

Emission Limits

7.3 Emission Limits

The emissions from the emergency engine stack shall not exceed any corresponding emissions rate limits listed in Table 7.2.

Table 7.2 Emergency Engine Emission Limits\(^{(a)}\)

<table>
<thead>
<tr>
<th>Source Description</th>
<th>PM({2.5})/PM({10}) (^{(b)})</th>
<th>SO(_2)</th>
<th>NO(_X)</th>
<th>CO</th>
<th>VOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC Engine</td>
<td>0.57 lb/hr ((c))</td>
<td>2.88 lb/hr ((c))</td>
<td>18.2 lb/hr ((c))</td>
<td>1.82 lb/hr ((c))</td>
<td>4.84 lb/hr ((c))</td>
</tr>
</tbody>
</table>

- \(^{(a)}\) In absence of any other credible evidence, compliance is ensured by complying with permit operating, monitoring, and record keeping requirements.
- \(^{(b)}\) Particulate matter with an aerodynamic diameter less than or equal to a nominal two point five (2.5) and ten (10) micrometers, including condensable particulate as defined in IDAPA 58.01.01.006.
- \(^{(c)}\) Pounds per hour, as determined by a test method prescribed by IDAPA 58.01.01.157, EPA reference test method, continuous emission monitoring system (CEMS) data, or DEQ-approved alternative.
- \(^{(d)}\) Tons per any consecutive 12-calendar month period.

7.4 Opacity Limit

Emissions from the emergency IC engine stack, or any other stack, vent, or functionally equivalent opening associated with the emergency IC engine, shall not exceed 20% opacity for a period or periods aggregating more than three minutes in any 60-minute period as required by IDAPA 58.01.01.625. Opacity shall be determined by the procedures contained in IDAPA 58.01.01.625.

NESHAP Compliance Requirements

7.5 NESHAP Compliance Date

In accordance with 40 CFR 63.6595, the permittee shall comply with the applicable emission limitations and operating limitations requirements of 40 CFR 63, ZZZZ for Stationary Reciprocating Internal Combustion Engines, no later than May 3, 2013.

7.6 Maintenance Requirements

In accordance with 40 CFR 63.6603, on and after May 3, 2013, for the emergency engine the Permittee shall:

- Change the oil and filter every 500 hours of operation or annually, whichever comes first.
- Inspect the air cleaner every 1,000 hours of operation or annually, whichever comes first.
- Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary.

7.7 Alternative Maintenance Requirements

In accordance with 40 CFR 63.6625(i), on and after May 3, 2013, the permittee has the option of implementing an oil analysis program to extend the oil change frequency specified in the Maintenance Requirements permit condition. The oil analysis must be performed at the same frequency as specified in the Maintenance Requirements permit condition. The oil analysis program must, at a minimum, analyze the following three parameters:

- Total Base Number, viscosity, and percent water content.

The limits for these parameters are as follows:

- A Total Base Number of less than 30% of the Total Base Number of the oil when new; the viscosity of the oil has changed by more than 20% from the viscosity of the oil when new; or the water content is greater than 0.5% (by volume).

If any of the limits are exceeded, and the IC engine is in operation, the Permittee must change the oil within two days of receiving the results of the analysis. If any of the limits are exceeded, and the IC engine is not in operation, the Permittee must change the oil within two days or before commencing operation of the IC engine, whichever is later.

The Permittee must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the IC engine. The analysis program must also be part of the maintenance plan for the engine.

7.8 Fuel Requirement

In accordance with 40 CFR 63.6604(b), beginning January 1, 2015, if you own or operate an existing emergency CI stationary RICE with a site rating of more than 100 brake HP and a displacement of less than 30 liters per cylinder that uses diesel fuel and operates or is contractually obligated to be available for more than 15 hours per calendar year for the purposes specified in §63.6640(f)(2)(ii) and (iii) or that operates for the purpose specified in §63.6640(f)(4)(ii), the permittee must use diesel fuel that meets the requirements in 40 CFR 1090.305 for nonroad diesel fuel, except that any existing diesel fuel purchased (or otherwise obtained) prior to January 1, 2015, may be used until depleted.

7.9 General Requirements

In accordance with 40 CFR 63.6605(a and b), the engine must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply at all times. At all times the permittee must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require the permittee to make any further efforts to reduce emissions if levels required by this standard have been achieved.
7.10 Operating Requirements

In accordance with 40 CFR 63.6625(e), the permittee must operate and maintain the emergency engine and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions.

In accordance with 40 CFR 63.6625(h), the permittee must minimize the engine's time spent at idle during startup and minimize the engine's startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Table 2d to this subpart apply.

7.11 Hour Meter

In accordance with 40 CFR 63.6625(f), the permittee must install a non-resettable hour meter if one is not already installed.

7.12 Continuous Compliance Requirements

In accordance with 40 CFR 63.6640(a, b, and e), the permittee must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Table 2d to this subpart that apply according to methods specified in Table 6 to this subpart. Table 6 requires that the permittee operate and maintain the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions; or develop and follow your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions. The permittee must report each instance in which you did not meet each emission limitation or operating limitation in Table 2d to this subpart that apply to you. These deviations must be reported according to the requirements in §63.6650. The permittee must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply.

7.13 Emergency Engine Requirements

In accordance with 40 CFR 63.6640(f), the permittee must operate the emergency stationary RICE according to the following requirements. In order for the engine to be considered an emergency stationary RICE under this subpart, any operation other than emergency operation, maintenance and testing, emergency demand response, and operation in non-emergency situations for 50 hours per year, as below, is prohibited. If the permittee does not operate the engine according to the following requirements, the engine will not be considered an emergency engine under this subpart and must meet all requirements for non-emergency engines.

- There is no time limit on the use of emergency stationary RICE in emergency situations.
- The permittee may operate your emergency stationary RICE for any combination of the purposes specified below for a maximum of 100 hours per calendar year. Any operation for non-emergency situations as allowed below counts as part of the 100 hours per calendar year allowed by this paragraph.
 - Emergency stationary RICE may be operated for maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, the regional transmission organization or equivalent balancing authority and transmission operator, or the insurance company
associated with the engine. The owner or operator may petition the Administrator for approval of additional hours to be used for maintenance checks and readiness testing, but a petition is not required if the owner or operator maintains records indicating that federal, state, or local standards require maintenance and testing of emergency RICE beyond 100 hours per calendar year.

Emergency stationary RICE may be operated for emergency demand response for periods in which the Reliability Coordinator under the North American Electric Reliability Corporation (NERC) Reliability Standard EOP-002-3, Capacity and Energy Emergencies (incorporated by reference, see §63.14), or other authorized entity as determined by the Reliability Coordinator, has declared an Energy Emergency Alert Level 2 as defined in the NERC Reliability Standard EOP-002-3.

- Emergency stationary RICE may be operated for periods where there is a deviation of voltage or frequency of 5 percent or greater below standard voltage or frequency.

- Emergency stationary RICE located at area sources of HAP may be operated for up to 50 hours per calendar year in non-emergency situations. The 50 hours of operation in non-emergency situations are counted as part of the 100 hours per calendar year for maintenance and testing and emergency demand response. Except as provided below, the 50 hours per year for non-emergency situations cannot be used for peak shaving or non-emergency demand response, or to generate income for a facility to an electric grid or otherwise supply power as part of a financial arrangement with another entity.

 - Prior to May 3, 2014, the 50 hours per year for non-emergency situations can be used for peak shaving or non-emergency demand response to generate income for a facility or to otherwise supply power as part of a financial arrangement with another entity if the engine is operated as part of a peak shaving (load management program) with the local distribution system operator and the power is provided only to the facility itself or to support the local distribution system.

 - The 50 hours per year for non-emergency situations can be used to supply power as part of a financial arrangement with another entity if all of the following conditions are met:

 o The engine is dispatched by the local balancing authority or local transmission and distribution system operator.

 o The dispatch is intended to mitigate local transmission and/or distribution limitations so as to avert potential voltage collapse or line overloads that could lead to the interruption of power supply in a local area or region.

 o The dispatch follows reliability, emergency operation or similar protocols that follow specific NERC, regional, state, public utility commission or local standards or guidelines.

 o The power is provided only to the facility itself or to support the local transmission and distribution system.

 o The owner or operator identifies and records the entity that dispatches the engine and the specific NERC, regional, state, public utility commission or local standards or guidelines that are being followed for dispatching the engine. The local balancing authority or local transmission and distribution system operator may keep these records on behalf of the engine owner or operator.

[08/12/2021]
7.14 Reporting Requirements

In accordance with 40 CFR 63.6650(h), the permittee must submit an annual report according to the following requirements:

- The report must contain the following information:
 - Company name and address where the engine is located.
 - Date of the report and beginning and ending dates of the reporting period.
 - Engine site rating and model year.
 - Latitude and longitude of the engine in decimal degrees reported to the fifth decimal place.
 - Hours operated for the purposes specified in §63.6640(f)(2)(ii) and (iii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(2)(ii) and (iii).
 - Number of hours the engine is contractually obligated to be available for the purposes specified in §63.6640(f)(2)(ii) and (iii).
 - Hours spent for operation for the purpose specified in §63.6640(f)(4)(ii), including the date, start time, and end time for engine operation for the purposes specified in §63.6640(f)(4)(ii). The report must also identify the entity that dispatched the engine and the situation that necessitated the dispatch of the engine.
 - If there were no deviations from the fuel requirements in §63.6604 that apply to the engine (if any), a statement that there were no deviations from the fuel requirements during the reporting period.
 - If there were deviations from the fuel requirements in §63.6604 that apply to the engine (if any), information on the number, duration, and cause of deviations, and the corrective action taken.

- The first annual report must cover the calendar year 2015 and must be submitted no later than March 31, 2016. Subsequent annual reports for each calendar year must be submitted no later than March 31 of the following calendar year.

- The annual report must be submitted electronically using the subpart specific reporting form in the Compliance and Emissions Data Reporting Interface (CEDRI) that is accessed through EPA's Central Data Exchange (CDX) (www.epa.gov/cdx). However, if the reporting form specific to this subpart is not available in CEDRI at the time that the report is due, the written report must be submitted to the Administrator at the appropriate address listed in §63.13.

7.15 Recordkeeping Requirements

In accordance with 40 CFR 63.6655 and 40 CFR 63.6660, on and after May 3, 2013, the permittee shall maintain records for the engine according to the requirements of 40 CFR 63, ZZZZ for Stationary Reciprocating Internal Combustion Engines. The records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

- The permittee must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE;
• The permittee must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation, including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engine is used for the purposes specified in §63.6640(f)(2)(ii) or (iii) or §63.6640(f)(4)(ii), the owner or operator must keep records of the notification of the emergency situation, and the date, start time, and end time of engine operation for these purposes.

• The permittee shall keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

• The permittee shall keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

[08/12/2021]

7.16 Incorporation of Federal Requirements by Reference

Unless expressly provided otherwise, any reference in this permit to any document identified in IDAPA 58.01.01.107.03 shall constitute the full incorporation into this permit of that document for the purposes of the reference, including any notes and appendices therein. Documents include, but are not limited to:

For permit conditions referencing or cited in accordance with any document incorporated by reference (including permit conditions identified as NESHAP), should there be any conflict between the requirements of the permit condition and the requirements of the document, the requirements of the document shall govern, including any amendments to that regulation.

[08/12/2021]

In accordance with 40 CFR 63.6665 the permittee shall comply with the requirements of 40 CFR 63 – General Provisions according to the requirements of 40 CFR 63, ZZZZ for Stationary Reciprocating Internal Combustion Engines.

[08/12/2021]
8 General Provisions

General Compliance

8.1 The permittee has a continuing duty to comply with all terms and conditions of this permit. All emissions authorized herein shall be consistent with the terms and conditions of this permit and the “Rules for the Control of Air Pollution in Idaho.” The emissions of any pollutant in excess of the limitations specified herein, or noncompliance with any other condition or limitation contained in this permit, shall constitute a violation of this permit, the “Rules for the Control of Air Pollution in Idaho,” and the Environmental Protection and Health Act (Idaho Code §39-101, et seq.).

[Idaho Code §39-101, et seq.]

8.2 The permittee shall at all times (except as provided in the “Rules for the Control of Air Pollution in Idaho”) maintain in good working order and operate as efficiently as practicable all treatment or control facilities or systems installed or used to achieve compliance with the terms and conditions of this permit and other applicable Idaho laws for the control of air pollution.

[IDAPA 58.01.01.211, 5/1/1994]

8.3 Nothing in this permit is intended to relieve or exempt the permittee from the responsibility to comply with all applicable local, state, or federal statutes, rules, and regulations.

[IDAPA 58.01.01.212.01, 5/1/1994]

Inspection and Entry

8.4 Upon presentation of credentials, the permittee shall allow DEQ or an authorized representative of DEQ to do the following:

- Enter upon the permittee’s premises where an emissions source is located, emissions-related activity is conducted, or where records are kept under conditions of this permit;
- Have access to and copy, at reasonable times, any records that are kept under the conditions of this permit;
- Inspect at reasonable times any facilities, equipment (including monitoring and air pollution control equipment), practices, or operations regulated or required under this permit; and
- As authorized by the Idaho Environmental Protection and Health Act, sample or monitor, at reasonable times, substances or parameters for the purpose of determining or ensuring compliance with this permit or applicable requirements.

[Idaho Code §39-108]

Construction and Operation Notification

8.5 This permit shall expire if construction has not begun within two years of its issue date, or if construction is suspended for one year.

[IDAPA 58.01.01.211.02, 5/1/1994]

8.6 The permittee shall furnish DEQ written notifications as follows:

- A notification of the date of initiation of construction, within five working days after occurrence; except in the case where pre-permit construction approval has been granted then notification shall be made within five working days after occurrence or within five working days after permit issuance whichever is later;
- A notification of the date of any suspension of construction, if such suspension lasts for one year or more; and
• A notification of the initial date of achieving the maximum production rate, within five working days after occurrence - production rate and date.

[IDA 58.01.01.211.01, 5/1/1994]

• A notification of the anticipated date of initial start-up of the stationary source or facility not more than sixty days or less than thirty days prior to such date; and

• A notification of the actual date of initial start-up of the stationary source or facility within fifteen days after such date.

[IDA 58.01.01.211.03, 5/1/1994]

Performance Testing

8.7 If performance testing (air emissions source test) is required by this permit, the permittee shall provide notice of intent to test to DEQ at least 15 days prior to the scheduled test date or shorter time period as approved by DEQ. DEQ may, at its option, have an observer present at any emissions tests conducted on a source. DEQ requests that such testing not be performed on weekends or state holidays.

8.8 All performance testing shall be conducted in accordance with the procedures in IDAPA 58.01.01.157. Without prior DEQ approval, any alternative testing is conducted solely at the permittee’s risk. If the permittee fails to obtain prior written approval by DEQ for any testing deviations, DEQ may determine that the testing does not satisfy the testing requirements. Therefore, at least 30 days prior to conducting any performance test, the permittee is encouraged to submit a performance test protocol to DEQ for approval. The written protocol shall include a description of the test method(s) to be used, an explanation of any or unusual circumstances regarding the proposed test, and the proposed test schedule for conducting and reporting the test.

8.9 Within 60 days following the date in which a performance test required by this permit is concluded, the permittee shall submit to DEQ a performance test report. The report shall include a description of the process, identification of the test method(s) used, equipment used, all process operating data collected during the test period, and test results, as well as raw test data and associated documentation, including any approved test protocol.

[IDA 58.01.01.157, 4/5/2000 and 4/11/2015]

Monitoring and Recordkeeping

8.10 The permittee shall maintain sufficient records to ensure compliance with all of the terms and conditions of this permit. Monitoring records shall include, but not be limited to, the following: (a) the date, place, and times of sampling or measurements; (b) the date analyses were performed; (c) the company or entity that performed the analyses; (d) the analytical techniques or methods used; (e) the results of such analyses; and (f) the operating conditions existing at the time of sampling or measurement. All monitoring records and support information shall be retained for a period of at least five years from the date of the monitoring sample, measurement, report, or application. Supporting information includes, but is not limited to, all calibration and maintenance records, all original strip-chart recordings for continuous monitoring instrumentation, and copies of all reports required by this permit. All records required to be maintained by this permit shall be made available in either hard copy or electronic format to DEQ representatives upon request.

[IDA 58.01.01.211, 5/1/1994]
Excess Emissions
8.11 The permittee shall comply with the procedures and requirements of IDAPA 58.01.01.130–136 for excess emissions due to start-up, shut-down, scheduled maintenance, safety measures, upsets, and breakdowns.

[IDAPA 58.01.01.130–136, 4/5/2000]

Certification
8.12 All documents submitted to DEQ—including, but not limited to, records, monitoring data, supporting information, requests for confidential treatment, testing reports, or compliance certification—shall contain a certification by a responsible official. The certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document(s) are true, accurate, and complete.

[IDAPA 58.01.01.123, 5/1/1994]

False Statements
8.13 No person shall knowingly make any false statement, representation, or certification in any form, notice, or report required under this permit or any applicable rule or order in force pursuant thereto.

[IDAPA 58.01.01.125, 3/23/1998]

Tampering
8.14 No person shall knowingly render inaccurate any monitoring device or method required under this permit or any applicable rule or order in force pursuant thereto.

[IDAPA 58.01.01.126, 3/23/1998]

Transferability
8.15 This permit is transferable in accordance with procedures listed in IDAPA 58.01.01.209.06.

[IDAPA 58.01.01.209.06, 4/11/2006]

Severability
8.16 The provisions of this permit are severable, and if any provision of this permit to any circumstance is held invalid, the application of such provision to other circumstances, and the remainder of this permit, shall not be affected thereby.

[IDAPA 58.01.01.211, 5/1/1994]