IDENTIFICATION

<table>
<thead>
<tr>
<th>1. Company Name</th>
<th>2. Facility Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staker and Parson Companies dba Idaho Materials and Construction</td>
<td>Kuna Ready Mix</td>
</tr>
</tbody>
</table>

3. Project Description (provide a complete description of the equipment or activity being permitted):

Portable concrete batch plant. Sand and gravel, cement, water, and flyash are weighed and loaded into mixers to produce concrete for delivery to off-site construction projects.

GENERAL INFORMATION

4. Proposed Location of the Concrete Batch Plant (CBP) and other plant details:

- [] Not portable, will remain at one location. Note: Please include a specific location (location address, UTM coordinates, Section, Township, Range, etc.) and a plot plan of the proposed location, including boundaries, structures, and emissions points, on a separate sheet.
- [x] Portable throughout the entire state of Idaho.

If portable, will the CBP plant stay at one location for more than 12 months? [] Yes [] No (The permittee will be required to relocate the permitted CBP production equipment to a different aggregate pit or storage area at least once every 12 months.)

Has this CBP been previously permitted? [] Yes (provide details) [x] No

Will the facility use electrical line power (no IC engines powering generators)? [x] Yes (IC engines sections below may be skipped) [] No

Will the facility use IC engines to generate electricity? [] Yes (complete the IC engine sections below) [x] No

Will the facility produce concrete at the same time as when aggregate is being crushed at the facility? [] Yes (provide details) [x] No

Selecting either of the following options will result in a smaller required set-back distance from the property line:

- Will the facility produce concrete on a seasonal basis? [] Yes (Note: operation will be limited between April 1st and November 30th) [x] No
- If two IC engines are used at the facility to provide electricity, will they need to be operated simultaneously? [] Yes [x] No (larger set-back)

CONCRETE BATCH PLANT SPECIFICATIONS

5. Manufacturer: Erie Strayer

6. Model: MP-11T

7. Date Manufactured: 2022

8. Loadout Type (check one): [x] Truck Mix [] Central Mix

9. Number of Transfer Points: 4

10. Rated Production Capacity: 228 yd³/hr 2,736 yd³/day 782,000 yd³/yr

11. Proposed Throughput Limitations: 1,400 yd³/day 400,000 yd³/yr Note: These concrete production limits will be placed in the permit.

12. Concrete Loadout Controls: [x] Truck Mix w/ Shroud [] Truck Mix w/ Water Ring [x] Truck Mix w/ Baghouse [] Central Mix w/ Baghouse

13. Fugitive Dust Controls: [x] Best Management Practices (BMPs) [] Control of aggregate piles with covered three-sided bunkers and the use of dust suppressants when the aggregate piles are not being used

TRUCK LOADOUT BAGHOUSE SPECIFICATIONS (If Applicable)

14. Manufacturer: Stephens

15. Model: SOS 6100 Central Dust Collector

16. Rated Flow Rate: 8,000 acfm

17. PM₁₀ Control Efficiency: 99.99 %

18. Exhaust Diameter or Dimensions (L x W): 24 x 12 in

19. Exhaust Discharge Height (from ground): 13.5 ft

20. Exhaust Orientation: [] Vertical (unobstructed upward) [x] Vertical (obstructed upward) [] Vertical (unobstructed downward) [] Horizontal

WEIGH BATCHER BAGHOUSE SPECIFICATIONS

21. Manufacturer: C&W

22. Model: CP35 Silo Dust Collector

23. Rated Flow Rate: 216 acfm

24. PM₁₀ Control Efficiency: 99.99 %

25. Exhaust Diameter or Dimensions (L x W): 1 inch opening all around perimeter of 12in x 36in exhaust vent

26. Exhaust Discharge Height (from ground): 34 ft

27. Exhaust Orientation: [] Vertical (unobstructed upward) [x] Vertical (obstructed upward) [] Vertical (unobstructed downward) [] Horizontal
CEMENT STORAGE SILO BIN VENT FILTER/BAGHOUSE SPECIFICATIONS

28. Manufacturer: C&W
29. Model: LPR-8 Silo filter vent
30. Silo Storage Capacity: 170 yd³

31. Rated Flow rate: 2,340 acfm
32. PM₁₀ Control Efficiency: 99.99 %

33. Exhaust Diameter or Dimensions (L x W): 120 x 1 (circular bell housing) in
34. Exhaust Discharge Height (from ground): 86.17 ft

35. Exhaust Orientation: [] Vertical Upward (unobstructed) [x] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal

SECOND CEMENT STORAGE SILO BIN VENT FILTERS/BAGHOUSE SPECIFICATIONS (If Applicable)

36. Manufacturer: C&W
37. Model: LPR-8 Silo filter vent
38. Silo Storage Capacity: 85 yd³

39. Rated Flow rate: 2,340 acfm
40. PM₁₀ Control Efficiency: 99.99 %

41. Exhaust Diameter or Dimensions (L x W): 120 x 1 (circular bell housing) in
42. Exhaust Discharge Height (from ground): 86.17 ft

43. Exhaust Orientation: [] Vertical Upward (unobstructed) [x] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal

FLY ASH STORAGE SILO BIN VENT FILTERS/BAGHOUSE SPECIFICATIONS

44. Manufacturer: C&W
45. Model: LPR-8 Silo filter vent
46. Silo Storage Capacity: 85 yd³

47. Rated Flow rate: 2,340 acfm
48. PM₁₀ Control Efficiency: 99.99 %

49. Exhaust Diameter or Dimensions (L x W): 120 x 1 (circular bell housing) in
50. Exhaust Discharge Height (from ground): 86.17 ft

51. Exhaust Orientation: [] Vertical Upward (unobstructed) [x] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal

SECOND FLY ASH STORAGE SILO BIN VENT FILTERS/BAGHOUSE SPECIFICATIONS (If Applicable)

52. Manufacturer: N/A
53. Model:
54. Silo Storage Capacity:

55. Rated Flow rate:
56. PM₁₀ Control Efficiency:

57. Exhaust Diameter or Dimensions (L x W):
58. Exhaust Discharge Height (from ground):

59. Exhaust Orientation: [] Vertical Upward (unobstructed) [] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal

BOILER/WATER HEATER SPECIFICATIONS

60. Manufacturer: Kemco
61. Model: RM
62. Date Manufactured: 2022

63. Rated Heat Input: 7 MMBtu/hr

64. Daily Operating Hours: 10 hrs/day
65. Annual Operating Hours: 1,000 hrs/yr

Note: These limits may be placed in the permit and will also apply to the second boiler (if one is used).

66. Fuel combusted: [x] Natural gas/LNG [x] LPG/propane [] Distillate fuel [] Electric (If heater is solely electric, skip questions 67-70)

 If distillate fuel oil (#1, #2, or a mixture) is used, what is the maximum sulfur content? [] 15 ppm (0.0015% by weight) [] 500 ppm (0.05% by weight)

67. Exhaust Diameter: 24 in
68. Exhaust Discharge Height (from ground): 22 ft
69. Exhaust Temperature: 70 °F

70. Exhaust Orientation: [x] Vertical Upward (unobstructed) [] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal

SECOND BOILER/WATER HEATER SPECIFICATIONS (If Applicable)

71. Manufacturer: N/A
72. Model:
73. Date Manufactured:

74. Rated Heat Input:

75. Fuel combusted: [] Natural gas/LNG [] LPG/propane [] Distillate fuel [] Electric (If heater is solely electric, skip questions 76-79)

 If distillate fuel oil (#1, #2, or a mixture) is used, what is the maximum sulfur content? [] 15 ppm (0.0015% by weight) [] 500 ppm (0.05% by weight)

76. Exhaust Diameter:
77. Exhaust Discharge Height (from ground):
78. Exhaust Temperature:

79. Exhaust Orientation: [] Vertical Upward (unobstructed) [] Vertical Downward (obstructed) [] Vertical Downward (unobstructed) [] Horizontal
PRIMARY IC ENGINE (≥600 bhp) SPECIFICATIONS (If Applicable)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>80. IC Engine Manufacturer</td>
<td>N/A</td>
</tr>
<tr>
<td>81. Model</td>
<td></td>
</tr>
<tr>
<td>82. Date Manufactured</td>
<td></td>
</tr>
<tr>
<td>83. Model year</td>
<td></td>
</tr>
<tr>
<td>84. Maximum rated horsepower (per the data plate)</td>
<td>_____ bhp</td>
</tr>
<tr>
<td>85. EPA Certification: Tier rating number</td>
<td>_______ or None</td>
</tr>
<tr>
<td>86. Maximum daily operation</td>
<td>_____ hrs/day</td>
</tr>
<tr>
<td>87. Maximum annual operation</td>
<td>_____ hrs/yr</td>
</tr>
<tr>
<td>Note: These operational limits will be placed in the permit.</td>
<td></td>
</tr>
<tr>
<td>88. Fuel(s) combusted in the IC engine?</td>
<td>Distillate fuel oil</td>
</tr>
<tr>
<td>If distillate fuel oil (#1, #2, or a mixture) is used, what is the maximum sulfur content?</td>
<td>15 ppm (0.0015% by weight)</td>
</tr>
<tr>
<td>89. IC engine exhaust stack parameters: Diameter</td>
<td>_____ inches</td>
</tr>
<tr>
<td>Height</td>
<td>_____ feet</td>
</tr>
<tr>
<td>Temperature</td>
<td>_____ ºF</td>
</tr>
<tr>
<td>Flow rate</td>
<td>_____ acfm</td>
</tr>
</tbody>
</table>

Questions 90 through 92 apply to non-Tier certified IC engines rated at > 300 bhp or Tier certified IC engines rated at > 300 bhp and manufactured prior to July 11, 2005 because these IC engines need demonstrate compliance with 40 CFR 63 Subpart ZZZZ.

<table>
<thead>
<tr>
<th>Question</th>
<th>Select one</th>
</tr>
</thead>
<tbody>
<tr>
<td>90. How will CO emissions be limited?</td>
<td>Emissions will be limited to a specific ppmvd (i.e. 49 or 23).</td>
</tr>
<tr>
<td></td>
<td>Emissions will be reduced by 70% or more.</td>
</tr>
<tr>
<td>91. If the IC Engine is rated at > 500 bhp, how will parameters/pollutants of the IC engine be measured?</td>
<td>A CEMS, Continuous Emissions Monitoring System. (If CEMS selected, the engine must be equipped with an oxidation catalyst and Question 40 must be answered Yes.)</td>
</tr>
<tr>
<td></td>
<td>A CPMS, Continuous Parameters Monitoring System.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>92. Will the IC engine be equipped with an oxidation catalyst?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

SECONDARY IC ENGINE (<600 bhp) SPECIFICATIONS (If Applicable)

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>93. IC Engine Manufacturer</td>
<td>N/A</td>
</tr>
<tr>
<td>94. Model</td>
<td></td>
</tr>
<tr>
<td>95. Date Manufactured</td>
<td></td>
</tr>
<tr>
<td>96. Model year</td>
<td></td>
</tr>
<tr>
<td>97. Maximum rated horsepower (per the data plate)</td>
<td>_____ bhp</td>
</tr>
<tr>
<td>98. EPA Certification: Tier rating number</td>
<td>_______ or None</td>
</tr>
<tr>
<td>99. Maximum daily operation</td>
<td>_____ hrs/day</td>
</tr>
<tr>
<td>100. Maximum annual operation</td>
<td>_____ hrs/yr</td>
</tr>
<tr>
<td>Note: These operational limits will be placed in the permit.</td>
<td></td>
</tr>
<tr>
<td>101. Fuel(s) combusted in the IC engine?</td>
<td>Distillate fuel oil</td>
</tr>
<tr>
<td>If distillate fuel oil (#1, #2, or a mixture) is used, what is the maximum sulfur content?</td>
<td>15 ppm (0.0015% by weight)</td>
</tr>
<tr>
<td>102. IC engine exhaust stack parameters: Diameter</td>
<td>_____ inches</td>
</tr>
<tr>
<td>Height</td>
<td>_____ feet</td>
</tr>
<tr>
<td>Temperature</td>
<td>_____ ºF</td>
</tr>
<tr>
<td>Flow rate</td>
<td>_____ acfm</td>
</tr>
</tbody>
</table>

Questions 103 through 105 apply to non-Tier certified IC engines rated at > 300 bhp or Tier certified IC engines rated at > 300 bhp and manufactured prior to July 11, 2005 because these IC engines need demonstrate compliance with 40 CFR 63 Subpart ZZZZ.

<table>
<thead>
<tr>
<th>Question</th>
<th>Select one</th>
</tr>
</thead>
<tbody>
<tr>
<td>103. How will CO emissions be limited?</td>
<td>Emissions will be limited to a specific ppmvd (i.e. 49 or 23).</td>
</tr>
<tr>
<td></td>
<td>Emissions will be reduced by 70% or more.</td>
</tr>
<tr>
<td>104. If the IC Engine is rated at >500 bhp, how will parameters/pollutants of the IC engine be measured?</td>
<td>A CEMS, Continuous Emissions Monitoring System. (If CEMS selected, the engine must be equipped with an oxidation catalyst and Question 10 must be answered Yes.)</td>
</tr>
<tr>
<td></td>
<td>A CPMS, Continuous Parameters Monitoring System.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Question</th>
<th>Yes or No</th>
</tr>
</thead>
<tbody>
<tr>
<td>105. Will the IC engine be equipped with an oxidation catalyst?</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Instructions for Form GCBP

1 – 3. Provide the company name, facility name (if different), and a brief project description.

USE ATTACHMENTS IF ADDITIONAL SPACE IS REQUIRED.

General Information:

4. Check whether the concrete batch plant will be located at a specific location or will be portable throughout the entire state of Idaho. If the plant will be at a specific location, then a plot plan of the site must be submitted. The site boundary must be shown on the map. The site boundary is often the property boundary and is the boundary inside of which the facility can legally and practically restrict access to those not associated with the facility. The plot plan should also show any structures and emissions points (truck loadout point, weigh batcher baghouse, and storage silos, etc.).

Also explain if the plant has been previously permitted and provide details if it has been.

In addition, specify whether the concrete batch plant will use electrical line power or will use IC engines powering electrical generators to operate.

In addition, specify if the facility will produce concrete at the same time as when aggregate is being crushed at the facility.

Specify whether the facility will produce concrete on a seasonal basis. If a reduced seasonal operation is selected, then the setback distances from the property line will be reduced but additional recordkeeping will be required.

Specify whether both IC engines (if needed to generate electricity at the facility) will need to be operated simultaneously. If the no simultaneous operation is selected, then the setback distances from the property line will be reduced but additional recordkeeping will be required.

Concrete Batch Plant Specifications:

5-7. Provide the concrete batch plant manufacturer, model, and the date the concrete batch plant was manufactured.

8. Specify whether the plant is a “Truck Mix” or Central Mix” type plant.

9. Specify the number of aggregate drop points that will occur in the production of concrete.

10. Provide the rated production capacity of the concrete batch plant.

11. Propose maximum daily and annual concrete production limits. **Note:** These proposed production limits will be placed in the permit.

12. Provide the concrete loadout controls that will be employed at the facility. **Note:** Better control of emissions from concrete loadout will improve the results of emissions modeling.

13. Specify whether Best Management Practices (BMPs) or the control of aggregate piles with covered three-sided bunkers and the use of dust suppressants when the aggregate piles are not being used are being employed at the facility.

Truck Loadout Baghouse Specifications (If Applicable):

14-15. Provide the truck loadout baghouse manufacturer and model.

16-17. Provide the truck loadout baghouse rated flowrate, in acfm, and the PM_{10} control efficiency percentage.

19-20. Provide the truck loadout baghouse exhaust stack parameters.

Weigh Batcher Baghouse Specifications:

21-22. Provide the weigh batcher baghouse manufacturer and model.

23-24. Provide the weigh batcher baghouse rated flowrate, in acfm, and the PM_{10} control efficiency percentage.

25-27. Provide the weigh batcher baghouse exhaust stack parameters.
Cement Storage Silo Bin Vent Filter/Baghouse Specifications:
28-30. Provide the cement storage silo bin vent filter/Baghouse manufacturer, model, and the silo storage capacity.
31-32. Provide the cement storage silo bin vent filter/Baghouse rated flowrate, in acfm, and the PM10 control efficiency percentage.
33-34. Provide the cement storage silo bin vent filter/Baghouse exhaust stack parameters.

Second Cement Storage Silo Bin Vent Filter/Baghouse Specifications (If Applicable):
36-38. Provide the cement storage silo bin vent filter/Baghouse manufacturer, model, and the silo storage capacity.
39-40. Provide the cement storage silo bin vent filter/Baghouse rated flowrate, in acfm, and the PM10 control efficiency percentage.
41-43. Provide the cement storage silo bin vent filter/Baghouse exhaust stack parameters.

Fly Ash Storage Silo Bin Vent Filter/Baghouse Specifications:
44-46. Provide the cement storage silo bin vent filter/Baghouse manufacturer, model, and the silo storage capacity.
47-48. Provide the fly ash storage silo bin vent filter/Baghouse rated flowrate, in acfm, and the PM10 control efficiency percentage.
49-51. Provide the fly ash storage silo bin vent filter/Baghouse exhaust stack parameters.

Second Fly Ash Storage Silo Bin Vent Filter/Baghouse Specifications (If Applicable):
52-54. Provide the cement storage silo bin vent filter/Baghouse manufacturer, model, and the silo storage capacity.
55-56. Provide the fly ash storage silo bin vent filter/Baghouse rated flowrate, in acfm, and the PM10 control efficiency percentage.
57-59. Provide the fly ash storage silo bin vent filter/Baghouse exhaust stack parameters.

Boiler/Water Heater Specifications:
60-62. Provide the concrete batch plant manufacturer, model, and the date the concrete batch plant was manufactured.
63. Provide the rated heat input of the boiler/water heater.
64-65. Provide the proposed maximum daily and annual hours of operation. It will be assumed that the second water heater (if one is used) operates according to the same daily and annual limits. Note: These limits may be placed in the permit.
66. Specify the fuel combusted by the boiler/water heater or if the boiler/water heater is electric. If distillate fuel is used, specify the sulfur content of the fuel.
67-70. Provide the boiler/water heater exhaust stack parameters.

Second Boiler/Water Heater Specifications (If Applicable):
71-73. Provide the concrete batch plant manufacturer, model, and the date the concrete batch plant was manufactured.
74. Provide the rated heat input of the boiler/water heater.
75. Specify the fuel combusted by the boiler/water heater or if the boiler/water heater is electric. If distillate fuel is used, specify the sulfur content of the fuel.
76-79. Provide the boiler/water heater exhaust stack parameters.
Primary IC Engine Specifications:

Note: Complete this section only if IC engines are used to generate electricity for the facility.

80-83. Provide the primary IC engine manufacturer, model, date the primary IC engine was manufactured, and the model year (used for EPA certification purposes) of the primary IC engine.

84. Provide the maximum horsepower of the primary IC engine (per the data plate) in bhp.

85. Provide the EPA certification number of the primary IC engine (i.e. 1, 2, 3, or 4).

86. Propose a maximum daily primary IC engine hourly limit. **Note:** This proposed hourly limit will be placed in the permit.

87. Propose a maximum annual primary IC engine hourly limit. **Note:** This proposed hourly limit will be placed in the permit.

88. Check which fuel is combusted in the primary IC engine. If distillate fuel oil is combusted, check the maximum proposed sulfur content of the fuel.

89. Provide the asphaltic oil tank heater exhaust stack parameters. The temperature and flow rate should be per the primary IC engine manufacturer.

Questions 90 through 92 apply to non-Tier certified IC engines rated at > 300 bhp and Tier certified IC engines rated at > 300 bhp and manufactured prior to July 11, 2005. If you are proposing a Tier certified IC engine rated at ≤ 300 bhp or a Tier certified IC engine rated at ≤ 300 bhp and manufactured on and after July 11, 2005 do not answer questions 90 through 92.

90. Subpart ZZZZ requires that CO emissions in the exhaust from existing non-Tier certified IC engines are either limited to a specific concentration, 49 ppmvd for engines rated at 300 bhp to ≤ 500 bhp or 23 ppmvd for engines rated at > 500 bhp, or are to reduce the CO concentration by 70% or more. Therefore, only one of the answers should be selected.

91. Subpart ZZZZ requires that, for IC engines rated at > 500 bhp, Applicants either install a CEMS (Continuous Emissions Monitoring System) or a CPMS (Continuous Parameters Monitoring System) in the exhaust stream to demonstrate compliance with the emissions limitations. Therefore, only one of the answers should be selected.

92. Specify if the IC engine is equipped, or will need to be equipped, with an oxidation catalyst to comply with the emissions limitations of Subpart ZZZZ.

Secondary IC Engine Specifications:

Note: Complete this section only if IC engines are used to generate electricity for the facility.

93-96. Provide the secondary IC engine manufacturer, model, date the secondary IC engine was manufactured, and the model year (used for EPA certification purposes) of the primary IC engine.

97. Provide the maximum horsepower of the secondary IC engine (per the data plate) in bhp.

98. Provide the EPA certification number of the secondary IC engine (i.e. 1, 2, 3, or 4).

99. Propose a maximum daily secondary IC engine hourly limit. **Note:** This proposed hourly limit will be placed in the permit.

100. Propose a maximum annual secondary IC engine hourly limit. **Note:** This proposed hourly limit will be placed in the permit.

101. Check which fuel is combusted in the secondary IC engine. If distillate fuel oil is combusted, check the maximum proposed sulfur content of the fuel.

102. Provide the secondary IC engine exhaust stack parameters. The temperature and flow rate should be per the secondary IC engine manufacturer.

Questions 103 through 105 apply to non-Tier certified IC engines rated at > 300 bhp and Tier certified IC engines rated at > 300 bhp and manufactured prior to July 11, 2005. If you are proposing a Tier certified IC engine rated at ≤ 300 bhp or a Tier certified IC engine rated at ≤ 300 bhp and manufactured on and after July 11, 2005 do not answer questions 103 through 105.
103. Subpart ZZZZ requires that CO emissions in the exhaust from existing non-Tier certified IC engines are either limited to a specific concentration, 49 ppmvd for engines rated at 300 bhp to ≤ 500 bhp or 23 ppmvd for engines rated at > 500 bhp, or are to reduce the CO concentration by 70% or more. Therefore, only one of the answers should be selected.

104. Subpart ZZZZ requires that, for IC engines rated at > 500 bhp, Applicants either install a CEMS (Continuous Emissions Monitoring System) or a CPMS (Continuous Parameters Monitoring System) in the exhaust stream to demonstrate compliance with the emissions limitations. Therefore, only one of the answers should be selected.

105. Specify if the IC engine is equipped, or will need to be equipped, with an oxidation catalyst to comply with the emissions limitations of Subpart ZZZZ.