<table>
<thead>
<tr>
<th>Drawing Number</th>
<th>Drawing Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRMI-T01</td>
<td>General Facility Topographic Plan - Sheet 1 (Section 19)</td>
<td>B</td>
</tr>
<tr>
<td>PRMI-T02</td>
<td>Typical Facility Site Plan</td>
<td>B, I</td>
</tr>
<tr>
<td>PRMI-T04</td>
<td>Facility Topographic Plan Existing Conditions</td>
<td>D</td>
</tr>
<tr>
<td>PRMI-T04a</td>
<td>Radialogical Environmental Monitoring Locations</td>
<td>P</td>
</tr>
<tr>
<td>PRMI-T05a</td>
<td>Facility Topographic Plan Pre-RCRA Units</td>
<td>B, J</td>
</tr>
<tr>
<td>PRMI-T06</td>
<td>Facility Typical Site Utility Plan</td>
<td>B</td>
</tr>
<tr>
<td>PRMI-T07</td>
<td>Facility Transportation Routes</td>
<td>B</td>
</tr>
<tr>
<td>PRMI-T08</td>
<td>Facility Typical Traffic Plan Interim Conditions</td>
<td>B</td>
</tr>
<tr>
<td>PRMI-T09</td>
<td>Facility Typical Traffic Plan Final at Closure</td>
<td>B, I</td>
</tr>
<tr>
<td>PRMI-T10</td>
<td>Facility Typical Communication and Emergency Response Equipment Plan</td>
<td>B, F, G</td>
</tr>
<tr>
<td>PRMI-T11</td>
<td>Facility Typical Soil Sampling Plan</td>
<td>B, I</td>
</tr>
<tr>
<td>PRMI-T12</td>
<td>Facility Topographic Plan Interim Conditions</td>
<td>B, D</td>
</tr>
<tr>
<td>PRMI-T13</td>
<td>Facility Typical Topographic Plan Final at Closure</td>
<td>I</td>
</tr>
<tr>
<td>Drawing Number</td>
<td>Drawing Title</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PRM-X11</td>
<td>Grand View Idaho - Storage Pad No. 4 and Process Plant Pad Plans and Sections (Note: Includes Leachate Tanks)</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-X12</td>
<td>Civ. - Container Storage Area Pad No. 4 and Process Plant Pad Sections</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-X13</td>
<td>Civ. - Container Storage Area Pad No. 4 and Process Plant Pad Sections & Details</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-X14</td>
<td>Civ. - Container Storage Area Pad No. 4 and Process Plant Pad Plans and Sections</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-X15</td>
<td>Civ. - Container Storage Area Pad No. 4 and Process Plant Pad Plans and Sections</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-X16</td>
<td>Civ. - Container Storage Area Pad No. 7 Storage and Processing Areas Grading Plan</td>
<td>I</td>
</tr>
<tr>
<td>PRM-X17</td>
<td>Civ. - Container Storage Pad No. 7 Storage and Processing Areas Sections and Details</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-R11</td>
<td>Typical General Arrangement Container Storage Areas PAD NOS. 4 & 5 and Plant PAD</td>
<td>C, D, I</td>
</tr>
<tr>
<td>D2020-A02</td>
<td>Architectural Containment Building (Debris Area) Floor Plan</td>
<td>C, D, I</td>
</tr>
<tr>
<td>D2020-C05</td>
<td>Civ. - Containment Building (Debris Area) Liner Plan</td>
<td>D, I</td>
</tr>
<tr>
<td>D2020-R02</td>
<td>General Arrangement Containment Building (Debris Area) Floor Plan</td>
<td>D, I</td>
</tr>
<tr>
<td>D2020-R05</td>
<td>General Arrangement Containment Building (Debris Area) Typical Details</td>
<td>D, I</td>
</tr>
</tbody>
</table>

US Ecology Process Treatment Bins

<table>
<thead>
<tr>
<th>Sheet 1 of 4</th>
<th>General Notes</th>
<th>General Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet 2 of 4</td>
<td>Plan and Elevations</td>
<td>General Information</td>
</tr>
<tr>
<td>Sheet 3 of 4</td>
<td>Leak Detection Retainment Pan</td>
<td>General Information</td>
</tr>
<tr>
<td>Sheet 4 of 4</td>
<td>Sections and Details</td>
<td>General Information</td>
</tr>
<tr>
<td>Drawing Number</td>
<td>Drawing Title</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>PRML-L01</td>
<td>Civil - Trench 10 and 11 Typical Site Plan</td>
<td>D, I</td>
</tr>
<tr>
<td>PRML-L02</td>
<td>Civil - Trenches 10 and 12 Typical Subgrade Plan</td>
<td>D, I</td>
</tr>
<tr>
<td>PRML-L03</td>
<td>Civil - Trenches 10 and 11 Typical Final Grading Plan</td>
<td>D, I</td>
</tr>
<tr>
<td>PRML-L04</td>
<td>Civil - Trenches 10 and 11 Cap System Sections and Details Typical Final Closure</td>
<td>D, I</td>
</tr>
<tr>
<td>PRML-L05</td>
<td>Civil - Trenches 10 and 11 Typical Final Closure Cap System Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L06</td>
<td>Civil - ET Cap Test Pit Typical Plan, Section, and Detail</td>
<td>D, I</td>
</tr>
<tr>
<td>PRML-L11</td>
<td>Facility - Cell 5 Typical Site Plan</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L12</td>
<td>Civil - Cell 5 Typical Primary Liner Plan</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L13</td>
<td>Civil - Cell 5 Typical Subgrade Plan at Closure</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L14</td>
<td>Civil - Cell 5 Typical Final Grading Plan</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L15</td>
<td>Civil - Cell 6 - Phase 1 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L16</td>
<td>Civil - Phase 1 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L17</td>
<td>Civil - Cell 6 - Phase 2 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L18</td>
<td>Civil - Cell 5 - Phase 2 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L19</td>
<td>Civil - Cell 5 Final Closure Typical Cap System Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L20</td>
<td>Civil - Cell 14 Typical Site Plan</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L21</td>
<td>Civil - Cell 14 Typical Secondary Liner Plan</td>
<td>D, I, M</td>
</tr>
<tr>
<td>Sheet 8 of 9</td>
<td>Civil - Cell 14 - Final Closure Typical Final Cover Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L23</td>
<td>Civil - Cell 14 Typical Final Grading Plan - (REPLACED Sheet 8 of 9)</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L24</td>
<td>Civil - Phase 1 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L25</td>
<td>Civil - Cell 14 - Phase 2 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L26</td>
<td>Civil - Phase 2 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>PRML-L27</td>
<td>Civil - Cell 14 - Phase 2 Typical Sections and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-00-00</td>
<td>Cell 15 - Grand View Facility</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-01-01</td>
<td>Cell 15 - Site Plan/Cell Layout</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-01-02</td>
<td>Cell 15 - Cell Construction Phasing and Waste Limits</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-01-03</td>
<td>Cell 15 - Sections and Details Sheet 1</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-01-04</td>
<td>Cell 15 - Sections and Details Sheet 2</td>
<td>D, I, M</td>
</tr>
<tr>
<td>52-01-05</td>
<td>Cell 15 - Sections and Details Sheet 3</td>
<td>D, I, M</td>
</tr>
<tr>
<td>Sheet 5 of 8</td>
<td>Civil Cell 15 Final Closure Final Cover Grading Plan</td>
<td>General Information</td>
</tr>
<tr>
<td>Sheet 6 of 8</td>
<td>Civil Cell 15 Final Closure Typical Cross Sections</td>
<td>General Information</td>
</tr>
<tr>
<td>Sheet 7 of 8</td>
<td>Civil Cell 15 Final Closure Typical Final Cover Section and Details</td>
<td>General Information</td>
</tr>
<tr>
<td>52-01-06</td>
<td>Cell 15 - Final Cover Grading Plan</td>
<td>General Information</td>
</tr>
<tr>
<td>52-01-07</td>
<td>Cell 15 - Final Cover Sections and Details</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-02</td>
<td>Cell 15 Final Modification - Cover Sheet</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-01</td>
<td>Cell 15 Modification - Phase IV Layout / Plan View</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-02</td>
<td>Cell 15 Modification - Cell Liner Sections</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-03</td>
<td>Cell 15 Modification - Interim Waste Placement</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-04</td>
<td>Cell 15 Modification - Final Waste Placement</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-05</td>
<td>Cell 15 Modification - Final Cover Grading Plan</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-06</td>
<td>Cell 15 Modification - Sumps and Risers Sections and Details</td>
<td>General Information</td>
</tr>
<tr>
<td>15-08-07</td>
<td>Cell 15 Modification - Leachate Pipe Sections and Details</td>
<td>General Information</td>
</tr>
<tr>
<td>Drawing Number</td>
<td>Drawing Title</td>
<td>May 2014 USEI Permit Application Section</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>16-11-03</td>
<td>Cell 16 Drawing Index and Cover Sheet</td>
<td>D</td>
</tr>
<tr>
<td>16-11-01</td>
<td>Cell 16 Cell Liner Layout Plan View 1</td>
<td>D</td>
</tr>
<tr>
<td>16-11-02</td>
<td>Cell 16 Cell Liner Layout Plan View 2</td>
<td>D</td>
</tr>
<tr>
<td>16-11-03</td>
<td>Cell 16 Liner Sections and Details</td>
<td>D</td>
</tr>
<tr>
<td>16-11-04</td>
<td>Cell 16 construction Phasing and Waste Placement</td>
<td>D, M</td>
</tr>
<tr>
<td>16-11-05</td>
<td>Cell 16 interim Storm Water Control Details</td>
<td>D</td>
</tr>
<tr>
<td>16-11-06</td>
<td>Cell 16 Sumps and Rivers Sections and Details</td>
<td>D</td>
</tr>
<tr>
<td>16-11-07</td>
<td>Cell 16 Leachate Pipe Sections and Details</td>
<td>D</td>
</tr>
<tr>
<td>16-11-08</td>
<td>Cell 16 Waste Placement Sections and Details</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G01</td>
<td>Piping Leachate Treatment System Cell 14 Leachate Plans</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G02</td>
<td>Piping Leachate Treatment System Detail Plan No. 1</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G03</td>
<td>Piping Leachate Treatment System Detail Plan No. 2</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G04</td>
<td>Piping Leachate Treatment System Detail Plan No. 3</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G05</td>
<td>Piping Leachate Treatment System Treatment Building Plan and Sections</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-G06</td>
<td>Piping Leachate Treatment System Piping Profile</td>
<td>D, I</td>
</tr>
<tr>
<td>720C-P01</td>
<td>Process & Instrumentation Diagram Leachate Treatment System</td>
<td>C, D</td>
</tr>
<tr>
<td>720C-P02</td>
<td>Process & Instrumentation Diagram Existing Leachate Treatment System</td>
<td>C, D</td>
</tr>
<tr>
<td>PRM-R01</td>
<td>Civil - Vertical Concrete Riser Pipe Remodelation</td>
<td>D</td>
</tr>
<tr>
<td>PRM-R15</td>
<td>General Facility Container Storage Area 1 Typical Container Layout & Regrading Plan</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-R21</td>
<td>General Arrangement - RCRA/PCB Storage BLDG and PCB Storage Tank Facility</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-R22</td>
<td>General Arrangement - RCRA/PCB Storage BLDG, and PCB Storage Tank Facility - Sections</td>
<td>C, D, I</td>
</tr>
<tr>
<td>PRM-D01</td>
<td>Facility - Surface Drainage Plan Existing Conditions</td>
<td>D, N</td>
</tr>
<tr>
<td>PRM-D02</td>
<td>Facility - Surface Drainage Plan Initial Conditions</td>
<td>N</td>
</tr>
<tr>
<td>PRM-D03</td>
<td>Facility Surface Drainage Plan Final at Closure</td>
<td>N</td>
</tr>
<tr>
<td>PRM-D05</td>
<td>Civil - Surface Water Typical Drainage Details</td>
<td>D, N</td>
</tr>
<tr>
<td>PRM-D06</td>
<td>Civil - Collection Ponds Nos. 1, 2, 6-3 Plan Sections and Details</td>
<td>D, L, N</td>
</tr>
<tr>
<td>PRM-D07</td>
<td>Civil - Collection Ponds Nos. 1, 2, & 3 Plan Sections and Details</td>
<td>D, L, N</td>
</tr>
<tr>
<td>PRM-D08</td>
<td>Civil - Final Closure - Cap Drainage Section and Details</td>
<td>N</td>
</tr>
<tr>
<td>PRM-L41</td>
<td>Civil - Evaporation Pond Typical Plan, Section, and Details</td>
<td>D, I, M</td>
</tr>
<tr>
<td>62-01-05</td>
<td>Cell 13 - Site Drainage Existing Conditions and Interim Phase</td>
<td>D</td>
</tr>
</tbody>
</table>
RCRA FEATURES:
1. OUTDOOR STABILIZATION FACILITY
2. VEHICLE RAMM FACILITY
3. EVAPORATION POND LOADING / UNLOADING
4. PAD 6 - RCRA CONTAINER STORAGE
5. PAD 6 - RCRA STORAGE ARRAYS
6. PAD 7 - RCRA CONTAINER STORAGE
7. PAD 8 - RCRA CONTAINER STORAGE
8. INDOOR STABILIZATION FACILITY
9. EAST TRUCK UNLOADING ARRAYS 1, 2, & 3
10. WEST TRUCK UNLOADING ARRAYS 1 & 2
11. EAST TRUCK UNLOADING ARRAYS 1, 2, & 3
12. WEST TRUCK UNLOADING ARRAYS 1 & 2
13. RCRA STORAGE TANKS - LEACHATE
14. PROCESS PLANT PAD
15. HOLD
16. HOLD
17. HOLD
18. HOLD
19. HOLD

OTHER FEATURES:
21. OUTDOOR STAB COMPRESSOR / MCC BLDG
22. OUTDOOR STAB FACILITY OFFICE
23. OUTDOOR STAB ADDITIVE SILOS
24. INDOOR STAB ADDITIVE SILOS
25. MAINTENANCE SHOP
26. FUEL STORAGE TANKS / STATION
27. WATER STORAGE / PUMP HOUSE
28. COMPRESSED GAS STORAGE AREA
29. REAGENT STORAGE
30. SECURITY BLDG
31. PROPANE TANKS
32. SAMPLING PLATFORM
33. EVACUATION GATES
34. TRUCK SCALES
35. ADMIN / LAB COMPLEX
36. BIOCEN BLDG
37. SAFETY EQUIPMENT - CONTAINERS
38. PAD 4 OFFICE
39. PAD 7 OFFICE
40. PCB CONTAINMENT (INACTIVE)
41. HYDRANT (NON-POWERED)
RCRA FEATURES:
1. OUTDOOR STABILIZATION FACILITY
2. VEHICLE WASH FACILITY
3. EVAPORATION POND LOADING / UNLOADING
4. PAD 4 - RCRA CONTAINER STORAGE
5. PAD 5 - RCRA CONTAINER STORAGE
6. PAD 6 - RCRA CONTAINER STORAGE
7. PAD 7 - RCRA CONTAINER STORAGE
8. PAD 9 - RCRA CONTAINER STORAGE
9. INDOOR STABILIZATION FACILITY
10. EAST TRUCK UNLOADING APRONS 1, 2, & 3
11. WEST TRUCK UNLOADING APRONS 1 & 2
12. LEACHATE TREATMENT SYSTEM
13. RCRA STORAGE TANKS - LEACHATE
14. PROCESS PLANT PAD
15. HOLD
16. HOLD
17. HOLD
18. HOLD
19. HOLD
20. HOLD

OTHER FEATURES:
21. OUTDOOR STAB COMPRESSOR / MCC BLDG
22. OUTDOOR STAB FACILITY OFFICE
23. OUTDOOR STAB ADDITIVE SILOS
24. INDOOR STAB ADDITIVE SILOS
25. MAINTENANCE SHOP
26. FUEL STORAGE TANKS / STATION
27. WATER STORAGE / PUMP HOUSE
28. COMPRESSED GAS STORAGE AREA
29. REAGENT STORAGE
30. SECURITY BLDG
31. PROPANE TANKS
32. SIMPLIS PLATFORM
33. SIMPLIS BLDG
34. INFLATIONたくない
35. TRUCK BLDG
36. ADMIN / LAB COMPLEX
37. BLDG 2
38. FIELD TECH OFFICE
39. SAFETY EQUIPMENT - CONTAINERS
40. PAD 4 OFFICE
41. PAD 7 OFFICE
42. PCB CONTAINMENT (INACTIVE)
43. HYDRANT (NON-POWERED)
TREATMENT PIT CAPACITY NOTES

- TANK CONCRETE VAULT DIMENSIONS (SECONDARY CONTAINMENT) ARE APPROXIMATELY 15' W x 20' L x 13' D

- TANK STEEL PAN DIMENSIONS (PRIMARY CONTAINMENT) ARE APPROXIMATELY: 173' W x 236' L x 143' D

- MAXIMUM INDIVIDUAL TANK CAPACITY IS 120,000 GALLONS

NOTES:
1. See A-STAB-09 FOR DOOR AND WINDOW SCHEDULE
2. See SLAG SHEET B ON SHEET CATAB-01A
NOTES:
1. ALL IMPORTED HLL AND UPPER 8 INCHES OF EXISTING SUBGRADE TO COMPACTED TO 95% OF STANDARD PROCTOR ALT# D 694.
2. ALL REINFORCING STEEL IS GRADE 60.
3. ALL CONCRETE SHALL BE 7-14 DAYS OLD AND SHALL BE AMENDED WITH IN.XYPEN ADHESIVE TO PERMANENTLY RETARD FUMEBELITY.
4. FINISHED SLAB SURFACES TO BE CURED WITH AN APPROVED CURING COMPOUND.
5. ALL CONCRETE ANCHORS ATTACHED ALONG EMBEDDED STEEL MEMBERS SHALL BE 1/2" BY 1/8" AND SPACED AT 12" ON CENTER.
6. STEEL IMBEDS SHALL BE Mild A36.

Keyway is omitted to accommodate waterproof feature (typical).
NOTES:
1. ALL IMPORTED SILL AND UPPER 8 INCHES OF EXISTING SUBGRADE TO BE COMPACTED TO 95% OF STANDARD PROCTOR LATERAL D 690.
2. ALL REINFORCING STEEL IS GRADE 60.
3. ALL CONCRETE SHALL BE 3"-4" THICK AND SHALL BE AMENDED WITH IN-SITE ADDITIVE TO PERMANENTLY RETARD FLOORING.
4. FOUNDATION SURFACES TO BE CURED WITH A PRE-APPLIED CURING COMPOUND.
5. ALL CONCRETE ANCHORS ATTACHED TO EMERGED STEEL MEMBERS SHALL BE 12" BY 12" AND SPACED 12" ON CENTER.
6. STEEL ANCHORS SHALL BE MIL-A 3590.
NOTE: Floor and wall framing components were adjusted to match liner panel layout. See K&T shop drawings.
FLOOR PLAN VIEW - FRAMING PLAN (TYP)

NOTES:

1. ALL VERTICAL FRAMING COMPONENTS MUST BE TERMINATED 8 INCHES ABOVE THE FLOOR OF THE CONCRETE TANK TO PROMOTE UNINTERRUPTED DRAINAGE TOWARDS THE INSPECTION PORT.

2. ALL FRAMING MEMBERS TO BE WELDED TO THE EMBEDDED PLATES AT EACH INTERSECTION.

3. STEEL PLATES TO BE SECURED TO THE FRAMING MEMBERS WITH 1-1/4" X 4" SLOTTED WASHERS SPACED AT THE FOLLOWING INTERVALS:
 - FLOOR AND NORTH WALL: 36" OLD OR LESS
 - ALL OTHER WALLS: 60" OLD OR LESS

4. ALL JOINTS AND EDGES ALONG THE STEEL PLATE LINING SHALL BE SEAMED WITH A NYLON PENETRATION WELD.

5. SHIP DRAWINGS OF PRIMARY CONTAMINANT LINER AND ASSOCIATED FRAMING COMPONENTS TO BE DETAINED WITH WELDING DIAGRAMS AND SUBMITTED FOR APPROVAL BY THE ENGINEER PRIOR TO COMMENCEMENT OF FABRICATION.

6. UPON COMPLETION OF STEEL LINER INSTALLATION, THE PRIMARY CONTAMINANT TANK SHALL BE REFILLED WITH WATER AND LEFT FULL FOR 24 HOURS TO CONFIRM ZERO LEAKAGE INTO THE SECONDARY ANNUAL.

NOTE: Floor and wall framing components were adjusted to match liner panel layout. See K&T shop drawings.

NORTH WALL ELEV. - FRAMING PLAN (TYP)

N.B.

INSPECTION PORT DETAIL

N.B.
RAILING MATERIAL SPECIFICATIONS:

1. All mixing tank railings including posts, rails, and handrails shall consist of 6-in.-dia. square tubing with 1/4-in. wall thickness.

2. All connection needs shall be installed in all structural corners. Post shoes and structural brace shall be provided.

3. All other joint locations should be 1/2-in. clearance needs.

4. See drawing #55-500-16 for process water attached to tank at 7/16.

5. Above to be installed before railing is installed.
WEDGE BOLLARD TO BE 6-BAG 4000 PSI CONCRETE 1.5" DIA. AGGREGATE

WEDGE BOLLARDS TO BE PAINTED YELLOW TO MATCH HOOP-BOLLARDS FOR AUTOMOBILE FUEL ISLANDS.

FINISH GRADE.

EMBED BOLLARD INTO SUBGRADE 8" 6.00

EMBED BOLLARD INTO PAVEMENT 8" BELOW SURFACE

WEDGE BOLLARD DETAILS

N.T.S.
NOTES:
1. EXCAVATE EXCESS AGGREGATE SUBGRADE MATERIALS AND STOCKPILE AS NEEDED. COMPACT REMAINING AGGREGATE SUBGRADE MATERIALS TO 95% OF MODIFIED PROCTOR (ASTM D 1557).
2. ALL REINFORCING STEEL IS GRADE 60.
3. ALL CONCRETE ON PROJECT REQUIRED TO ACHIEVE 4,000 PSI COMpressive STRENGTH IN 28 DAYS.
4. FLOOR SLABS SHALL BE CURED WITH AN APPROVED CURING COMPOUND. CURING COMPOUND TO BE COMPATIBLE WITH FINISH MATERIALS.
5. EPSOXY COATING TO BE APPLIED ON ALL FINISHED CONCRETE SURFACES.
6. CONSTRUCTION JOINTS AND CONTROL JOINT LAYOUT TO BE APPROVED BY ENGINEER PRIOR TO SETTING FORMS.
7. PLACE 3 x 5/8" x 6" BARS IN SLABS AT RE-ENTRANT CORNERS OF SUMPS.
8. PRE-CONSTRUCTION TOPOGRAPHIC SURVEY OF INTERIOR AGGREGATE SURFACE PERFORMED BY EAGLE LAND SURVEY ON APRIL 28, 2011.
9. DIMENSION LABELS HAVE PREDNENCE OVER SCALd DIMENSIONS.
10. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
NOTES:
1. COMPACT UPPER 8 INCHES OF EXISTING SUBGRADE MATERIALS TO 95% OF MODIFIED PROCTOR (ASTM D 1557).
2. PROVIDE 3/4 X 3/4" CHAMFER ON ALL EXPOSED CONCRETE EDGES.
3. EPOXY COATING TO BE APPLIED ON ALL FINISHED CONCRETE SURFACES.
4. CONSTRUCTION JOINTS AND CONTROL JOINT LAYOUT TO BE APPROVED BY ENGINEER PRIOR TO SETTING FORMS.
US ECOLOGY PROCESS TREATMENT BIN
GRAND VIEW, IDAHO
2006

DESIGN CRITERIA:

OCCUPANCY:
DORM AND RESIDENTIAL
2001 INTERNATIONAL BUILDING CODE

DESIGN LOADING:

1. THE MATATIONAL LOAD IS 100 PSF AND THE LOCAL LOAD ON THE BIN WALLS IS 200 PSF. ALL WALLS ARE CONSIDERED AS A SINGLE WALL.
2. THE BIN HAS BEEN DEIGNED TO SUPPORT A LOAD OF 2,000 PSF.
3. ANY MATERIAL USED TO CONNECT THE BIN TO THE FOUNDATION MUST BE ALLOWED TO BE CARRIED BY COMBINATION OF LOADS.
4. THE DESIGN LOAD FOR THE END WALLS IS 100 PSF.

GENERAL NOTES:

1. USE PROPERLY DESIGNED SHOULDER, BRACING AND UNDERBRACING, I.E., AS NECESSARY BY CONDITIONS OR AS REQUIRED; IT IS THE CONTRACTOR'S RESPONSIBILITY TO DETERMINE AS REQUIRED TO ENSURE THE STRUCTURAL INTENT AND ITS COMPONENT PARTS ARE IN PROPER DIRECTION.
2. NO FIELD DESIGN OR STRUCTURAL COMPONENTS ARE TO BE ALTERED UNLESS APPROVED BY THE ENGINEER ON FILE BLACK AND WHITE OR COLORED ENGINEER'S DRAWINGS AND FOUNDATION DETAILS. NO FORCE DUE TO WEATHER, WIND OR ANY OTHER CONSTRUCTION DETAILS.
3. ALL ORMONDS TO BE PLACED IN ANY STRUCTURAL MEMBER TO BE IDENTIFIED IN ARROW DIRECTIONS SHOWN.
4. INTERNAL BRACE DESIGN TO BE CHECKED AND EXTENDED WITHIN THE STRUCTURAL ENGINEER.
5. MATERIALS AND DIMENSIONS SHOWN ARE IN BRIEF DETERMINED AND UNLESS OTHERWISE NOTED.

MATERIALS:

A. SPECIFICATION: 400 KSI MIN. 24K CU. YD.

B. MATERIAL:

<table>
<thead>
<tr>
<th>SHEET LEGEND</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet No.</td>
</tr>
<tr>
<td>11/00</td>
</tr>
<tr>
<td>11/01</td>
</tr>
<tr>
<td>11/02</td>
</tr>
<tr>
<td>11/03</td>
</tr>
</tbody>
</table>

1. MATERIALS:

- 1.000 07-12:
- COPPER AND STEEL PLATE
- COPPER AND STEEL PLATE
- COPPER AND STEEL PLATE
1. Reference the original Cell 15 design drawings, prepared by Washington Group International (2001), for coordinates and elevations of existing cell features.

2. Dimension labels have precedence over scaled dimensions.

3. Any discrepancies shall be brought to the attention of the engineer.

4. Internal references to drawing numbers within this set have been abbreviated for simplicity (e.g. drawing 15-08-02 is referenced as drawing 02).

General Notes:

LEGEND

- Fence Line
- Property Boundary
- Unimproved Road
- Topographic Contours
- Culvert
- Drainage Channel
- Waste Unit
- Edge of Pavement
- Existing Telephone Line
- Leachate Pipe
- Survey Coordinate Grid Line
- Cut
- Fill
- Survey Monument
- Power Pole
- Monitor Well
- Fence Gate

Sheet #:

15-08-00
15-08-01
15-08-02
15-08-03
15-08-04
15-08-05
15-08-06
15-08-07

Drawing Description:

- Drawing Index / Cover Sheet
- Phase IV Liner Layout / Plan View
- Cell Liner Sections
- Interim Waste Placement
- Final Waste Placement
- Final Cover Grading Plan
- Final Cover Sections and Details
- Flume Sections and Details

Drawing Index / Cover Sheet

- Interim Waste Placement
- Final Waste Placement
- Final Cover Grading Plan
- Final Cover Sections and Details
- Flume Sections and Details

Cell Liner Sections

- Final Waste Placement
- Final Cover Grading Plan
- Final Cover Sections and Details
- Flume Sections and Details

Phase IV Liner Layout / Plan View
1. REFERENCE THE ORIGINAL CELL 15 DESIGN DRAWINGS (2001, WGI) FOR COORDINATES AND ELEVATIONS OF EXISTING CELL FEATURES.

2. EXISTING TOPOGRAPHIC SURVEY PERFORMED BY ARROW LAND SURVEY IN MARCH 2008.

3. RETAIN AND PROTECT EXISTING SURVEY BENCHMARK LOCATIONS:
 - BM 15-1 N 507,786.56 E 364,343.17 EL 2,582.01
 - BM 15-2 N 508,802.45 E 364,344.72 EL 2,559.76
 - BM 15-3 N 507,551.45 E 365,157.81 EL 2,570.09
 - BM 15-4 N 508,870.87 E 365,170.73 EL 2,539.09

4. ELEVATIONS FOR INTERIOR CELL COORDINATES ARE TO TOP OF LCRS GEOMEMBRANE, AS SHOWN ON SECTION A, DRAWING 02.
NOTES:
1. UPPER 12 INCHES OF WASTE MATERIAL TO BE SELECT 3" MINUS FREE OF SHARP OBJECTS.
2. GRADE BENCHES TO DRAIN AT 5 PERCENT PRIOR TO PLACEMENT OF GEOSYNTHETIC COVER MATERIALS. SEE SHEET 9.
3. RECESS WASTE ELEVATIONS IN THE VICINITY OF THE FLUME AS NECESSARY TO PROVIDE VERTICAL CLEARANCE WITH THE GEOSYNTHETIC COVER MATERIALS. SEE SECTION B ON SHEET 07.
4. WASTE CONTOUR ELEVATIONS ARE SHOWN IN 5 FOOT INTERVALS.
NOTES:

1. INSTALL 18" DIAMETER CORRUGATED CULVERTS AT EACH DRAIN CHANNEL CROSSING DURING CONSTRUCTION OF ACCESS ROAD.

2. MINOR ADJUSTMENTS TO CONTROL POINTS SHOWN WILL BE ACCEPTABLE IN ORDER TO MAKE CONTOUR LINES SMOOTH AND CONTINUOUS AND TO ELIMINATE SHARP CORNERS, AS APPROVED BY THE FIELD ENGINEER.

3. GAS VENTING SYSTEM CONSISTS OF 12' WIDE, TYPE 2 GEOCOMPOSITE PANELS. OVERLAP ADJOINING PANELS AT LEAST 2 FEET.
TYPICAL WASTE PLACEMENT

GAS VENTING SYSTEM

TYPICAL DRAINAGE CHANNEL

GEOSYNTHETIC COVER TERMINATION

N.T.S.

N.T.S.

N.T.S.

N.T.S.

TYPICAL WASTE PLACEMENT

US Ecology Idaho
an American Ecology company

5260 Chinden Blvd • Boise, Idaho 83714
Phone (208) 658-8700 • Fax (208) 658-8703

15-08-06
GENERAL NOTES

1. DIMENSION LABELS HAVE PRIORITY OVERT SCALING DIMENSIONS.
2. ANY DISCREPANCIES SHALL BE BROUGHT TO THE ATTENTION OF THE ENGINEER.
3. INTERNAL REFERENCES TO DRAWING NUMBERS WITHIN THIS SET HAVE BEEN ABBREVIATED FOR SIMPLICITY (E.G. DRAWING 16-11-06 IS REFERENCED AS DRAWING 96).
4. SURVEY OF EXISTING TOPOGRAPHY WITHIN CELL 16 FOOTPRINT PERFORMED BY ARROW SURVEY IN MARCH 2009.
5. CONTRACTOR SHALL COMPLY WITH THE CLEAN WATER ACT NATIONAL POLLUTION DISCHARGE ELIMINATION SYSTEM (NPDES). THE CONTRACTOR MUST FILE A NOTICE OF INTENT (NOI) WITH THE EPA AND IMPLEMENT AN APPROVED STORM WATER POLLUTION PREVENTION (SWPPP) PLAN FOR THE INITIAL CONSTRUCTION CONDITIONS. THE OWNER'S SURFACE WATER MANAGEMENT PLAN WILL ADDRESS LONG-TERM CONSIDERATIONS FOR SEEDING AND CONTROL.

FACILITY SITE MAP

CELL 16 SURVEY CONTROL POINTS

<table>
<thead>
<tr>
<th>NO</th>
<th>BM</th>
<th>EXISTING (FT)</th>
<th>NORTHING (FT)</th>
<th>ELEVATION (FT)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>16-1</td>
<td>362,173.35</td>
<td>509,251.75</td>
<td>2,652.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-2</td>
<td>361,244.15</td>
<td>509,456.34</td>
<td>2,651.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-3</td>
<td>360,202.25</td>
<td>508,668.17</td>
<td>2,350.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-4</td>
<td>359,976.00</td>
<td>511,490.94</td>
<td>2,562.45</td>
<td>BRASS CAP</td>
<td></td>
</tr>
<tr>
<td>16-5</td>
<td>351,283.38</td>
<td>511,698.82</td>
<td>2,537.44</td>
<td>ALUM CAP</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

- CUT
- FILL
- CROWN & DIRECTION OF DRAINAGE
- SURVEY CONTROL POINT
- POWER POLE
- WELL
- FENCE LINE
- LEACHATE PIPE
- PROPERTY BOUNDARY
- UNPaved ROAD
- EXISTING TOPOGRAPHY
- CULVERT
- CUTOFF INTERFACE
- DRAINAGE CHANNEL
CELL 16 DESIGN CAPACITY

<table>
<thead>
<tr>
<th>LENGTH (ft)</th>
<th>ESTIMATED WASTE CAPACITY (cyd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INITIAL PHASE 900 ft (assumed)</td>
<td>2,022,200</td>
</tr>
<tr>
<td>INTERIM PHASES per additional 100 ft</td>
<td>433,700</td>
</tr>
<tr>
<td>MAXIMUM PHASE 2900 ft (total)</td>
<td>10,262,500</td>
</tr>
</tbody>
</table>

NOTES:
1. WASTE PLACEMENT ALONG THE NORTH PERIMETER OF CELL 16 SHALL BE TEMPORARILY TERMINATED AT THE 2.5% SLOPE, TO PROVIDE CONTAINMENT OF POTENTIAL STORED WATER RUN-OFF.
2. FINAL WASTE PLACEMENT ALONG THE NORTH SLOPE SHALL OCCUR NEAR COMPLETION OF THE MAXIMUM PHASE, PRIOR TO CLOSURE.
3. INSTALL 18" DIAMETER CORRUGATED CULVET AT EACH DRAIN CHANNEL CROSSING DURING CONSTRUCTION OF TEMPORARY ACCESS ROAD.

TYPICAL WASTE PLACEMENT

5260 Chinden Blvd - Boise, Idaho 83714
Phone (208) 659-8700 - Fax (208) 659-8723

US Ecology Idaho
An American Ecology Company

FOOTNOTE:

- Sheet 4 of 22
- Sheet 16 of 22
- Drawn by: M. Rankin
- Checked by: D. Rice
- 16-11-08
- 706-01654

Sec. 13, Twp 04N, R4W, Sandoval County, NM

WASTE PLACEMENT
SECTIONS AND DETAILS

PREPARED BY

AMERICAN TECNICS
TYPICAL FINAL COVER SECTION

NOT FOR CONSTRUCTION
RISER PIPE SLEEVE

RISER PIPE PUMP DETAIL

RISER PIPE CAP DETAIL

NOTES:
1. HOPE PIPE SHOULD BE CENTERED INSIDE OF THE CONCRETE RISER TO THE EXTENT PRACTICAL.
2. DRAIN ROCK AGGREGATE MUST BE APPROVED BY THE ENGINEER.

CONSTRUCTION SEQUENCE:
1. CONFIRM TOTAL DEPTH OF EXISTING CONCRETE MANS, PIPE AND DRAINAGE.
2. CUT HOPE RISER TO MATCH LENGTH OF CONCRETE PIER USING A WHEEL SAW.
3. SECURE HOPE PLUG TO TOP END OF HOPE PIPE.
4. PERFORM TRIM OPUS/board replacement PUMP HOPE TO PIPE INSTALLATION.
5. OPERATE EXISTING PUMP TO REMOVE PUMPABLE LIQUIDS FROM THE CONCRETE RISER.
6. REMOVE EXISTING PUMP.
7. LIFT HOPE PIPE INTO VERTICAL POSITION WITH CRANE.
8. CONFIRM THAT HOPE PIPE IS ADEQUATELY REACHED TO PREVENT INTRUSION OF DRAIN ROCK.
9. INSTALL DRAIN ROCK AROUND THE HOPE PIPE Analogous up to the indicated level.
10. REMOVE HOPE PLUG.
11. CUT NOTCH FOR DRAIN RISER, PIPE, AND POWER LEADS.
12. INSTALL REPLACEMENT PUMP.
13. COMPARE OPERATION OF LIQUID LEVEL SENSOR, OPERATE PUMP AS NECESSARY.
14. REPLACE HOPE PLUG.

CONTINGENCY CAUTION:
THE EXISTING LEACHATE PUMP SHALL NOT BE REMOVED TO ACCOMMODATE HOPE SLEEVE INSTALLATION UNTIL OPERATION OF THE REPLACEMENT PUMP IS CONFIRMED.

IF FOR ANY REASON THE HOPE PIPE INSTALLATION IS POSTPONED BY MORE THAN 5 DAYS, THEN THE EXISTING LEACHATE PUMP SHALL BE REINSTALLED TO ACCOMMODATE SCHEDULED LEACHATE INSPECTION INTERVALS.

RISER PIPE SLEEVE

N.T.A.

RISER PIPE PUMP DETAIL

N.T.B.

RISER PIPE CAP DETAIL

N.T.A.

NOTCH TO BE FIELD FIT FOR PENETRATIONS

DISCHARGE HOSE FROM PUMP WANTED AT LEAST 2" BACK

DRAIN ROCK CORROSION PANEL

SHEET METAL RACK w/ HOPE CAP

CAST- IN-PLACE CONCRETE BASE MIN. 12" THICK, SURFACE SLOPED TO DRAIN, max.3000 PSI.

HOLE IN RISER 1 1/2" DIA.

DISCHARGE HOLE FROM PUMP WANTED AT LEAST 2" BACK

HOPE LEADS TO MOBILE CONTROL PANEL

DRAIN ROCK AGGREGATE