Statement of Basis

Permit to Construct No. P-2015.0015
Project ID 61636

Alta Mesa Services, LP
Little Willow Road Gathering Facility
New Plymouth, Idaho

Facility ID 075-00022

Final

February 22, 2016
Kelli Wetzel
Permit Writer

The purpose of this Statement of Basis is to satisfy the requirements of
IDAPA 58.01.01.et seq, Rules for the Control of Air Pollution in Idaho,
for issuing air permits.
ACRONYMS, UNITS, AND CHEMICAL NOMENCLATURE

AAC acceptable ambient concentrations
AACC acceptable ambient concentrations for carcinogens
acfm actual cubic feet per minute
ASTM American Society for Testing and Materials
Btu British thermal units
CAA Clean Air Act
CAM Compliance Assurance Monitoring
cfm cubic feet per minute
CFR Code of Federal Regulations
CI compression ignition
CO carbon monoxide
CO₂ carbon dioxide
CO₂e CO₂ equivalent emissions
DEQ Department of Environmental Quality
dscf dry standard cubic feet
EL screening emission levels
EPA U.S. Environmental Protection Agency
GHG greenhouse gases
gr grains (1 lb = 7,000 grains)
HAP hazardous air pollutants
hp horsepower
hr/yr hours per consecutive 12 calendar month period
ICE internal combustion engines
IDAPA a numbering designation for all administrative rules in Idaho promulgated in accordance with the Idaho Administrative Procedures Act
km kilometers
lb/hr pounds per hour
lb/qtr pound per quarter
m meters
MACT Maximum Achievable Control Technology
mg/dscm milligrams per dry standard cubic meter
MMBtu million British thermal units
MMscf million standard cubic feet
NAAQS National Ambient Air Quality Standard
NESHAP National Emission Standards for Hazardous Air Pollutants
NO₂ nitrogen dioxide
NOₓ nitrogen oxides
NSPS New Source Performance Standards
O&M operation and maintenance
O₂ oxygen
PC permit condition
PM particulate matter
PM₂.₅ particulate matter with an aerodynamic diameter less than or equal to a nominal 2.5 micrometers
PM₁₀ particulate matter with an aerodynamic diameter less than or equal to a nominal 10 micrometers
ppm parts per million
ppmw parts per million by weight
PSD Prevention of Significant Deterioration
psig pounds per square inch gauge
PTC permit to construct
PTC/T2 permit to construct and Tier II operating permit
PTE potential to emit
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PW</td>
<td>process weight rate</td>
</tr>
<tr>
<td>RAP</td>
<td>recycled asphalt pavement</td>
</tr>
<tr>
<td>RICE</td>
<td>reciprocating internal combustion engines</td>
</tr>
<tr>
<td>Rules</td>
<td>Rules for the Control of Air Pollution in Idaho</td>
</tr>
<tr>
<td>scf</td>
<td>standard cubic feet</td>
</tr>
<tr>
<td>SCL</td>
<td>significant contribution limits</td>
</tr>
<tr>
<td>SIP</td>
<td>State Implementation Plan</td>
</tr>
<tr>
<td>SM</td>
<td>synthetic minor</td>
</tr>
<tr>
<td>SM80</td>
<td>synthetic minor facility with emissions greater than or equal to 80% of a major source threshold</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>sulfur dioxide</td>
</tr>
<tr>
<td>SO$_x$</td>
<td>sulfur oxides</td>
</tr>
<tr>
<td>T/day</td>
<td>tons per calendar day</td>
</tr>
<tr>
<td>T/hr</td>
<td>tons per hour</td>
</tr>
<tr>
<td>T/yr</td>
<td>tons per consecutive 12 calendar month period</td>
</tr>
<tr>
<td>T2</td>
<td>Tier II operating permit</td>
</tr>
<tr>
<td>TAP</td>
<td>toxic air pollutants</td>
</tr>
<tr>
<td>ULSD</td>
<td>ultra-low sulfur diesel</td>
</tr>
<tr>
<td>VOC</td>
<td>volatile organic compounds</td>
</tr>
<tr>
<td>yd3</td>
<td>cubic yards</td>
</tr>
<tr>
<td>μg/m3</td>
<td>micrograms per cubic meter</td>
</tr>
</tbody>
</table>
FACILITY INFORMATION

Description

Alta Mesa Services, L.P (Alta Mesa) submitted an application for a revision to their natural gas gathering facility called the Little Willow Road Gathering Facility located in New Plymouth. The facility gathers natural gas from individual well sites where produced gas, oil, and water is separated and prepared for pipeline delivery to the refrigeration plant.

Production from individual well sites flows into individual line heaters/separators (gas production units). Separated water is piped to tanks and trucked off site. Crude is also piped to tanks and trucked off site. Flashed vapors from the tanks is collected in a venting system and piped to a vapor combustor to be burned. Condensate from all of the individual gas production units comesles and flows into a single three-phase separator to allow flashed gas from pressure reduction to separate out before metering. The condensate is metered and proceeds to a 4” pipeline for transport to the refrigeration plant approximately 11 miles to the south. The separated gas from the individual gas production units is compressed in an engine compressor to pipeline pressure. From there, the gas flows into an electric cooler to be cooled and then into a 98% emission free dehydrator. The gas is then metered and proceeds to a 12” pipeline for transport to the refrigeration plant.

Permitting History

The following information was derived from a review of the permit files available to DEQ. Permit status is noted as active and in effect (A) or superseded (S).

November 18, 2015 P-2015.0015, Initial permit to construct, Permit status (A, but will become S upon issuance of this permit)

Application Scope

This PTC is a revision of an existing PTC.

The applicant has proposed to:

- Reduce the size of the permitted compressor engine and dehydrator;
- Install four additional line heaters, four additional water tanks, and one additional oil tank;
- Install two heater treaters.

Application Chronology

December 16, 2015 DEQ received an application and an application fee.

January 11, 2016 DEQ determined that the application was complete.

January 20, 2016 DEQ made available the draft permit and statement of basis for peer and regional office review.

January 27, 2016 DEQ made available the draft permit and statement of basis for applicant review.

February 11, 2016 DEQ received the permit processing fee.

February 22, 2016 DEQ issued the final permit and statement of basis.
TECHNICAL ANALYSIS

Emissions Units and Control Equipment

Table 1 EMISSIONS UNIT AND CONTROL EQUIPMENT INFORMATION

<table>
<thead>
<tr>
<th>Source ID No.</th>
<th>Sources</th>
<th>Control Equipment</th>
</tr>
</thead>
</table>
| Compressor Engine 1 ENG1 | Manufacturer: Caterpillar
Model: G3508B
Manufacture Date: TBD
Max. capacity: 690 bhp
Fuel: Natural Gas | None |
| Reboiler RBLR1 | Rated capacity: 0.25 MMBtu/hr
Fuel: Natural Gas | |
| Vapor Combustor VPCOMBI | Rated capacity: 2.5 MMBtu/hr
Fuel: Natural Gas | |
| 10 Line Heaters LNHTTR1-10 | Rated capacity: from 0.5 to 1.0 MMBtu/hr each
Fuel: Natural Gas | |
| 2 Heater Treaters HTRTR1-2 | Rated capacity: 1 MMBtu/hr and 2.5 MMBtu/hr
Fuel: Natural Gas | |
| 6 Oil Tanks OILTNK1-6 | Capacity: 1000 bbl each | Controlled by the Vapor Combustor Control Efficiency 98.0% |
| 6 Water Tanks WTRNTNK | Capacity: 500 bbl each | |
| Oil Loading LOAD1 | Throughput: 1000 BOPD | Control Efficiency 98.0% |
| Dehydrator DEHY1 | Throughput: 20 MMscf/d | Control Efficiency 98% |

Emissions Inventories

Potential to Emit

IDAPA 58.01.01 defines Potential to Emit as the maximum capacity of a facility or stationary source to emit an air pollutant under its physical and operational design. Any physical or operational limitation on the capacity of the facility or source to emit an air pollutant, including air pollution control equipment and restrictions on hours of operation or on the type or amount of material combusted, stored or processed, shall be treated as part of its design if the limitation or the effect it would have on emissions is state or federally enforceable. Secondary emissions do not count in determining the potential to emit of a facility or stationary source.

Using this definition of Potential to Emit an emission inventory was developed for the compressor engine, reboiler, vapor combustor, ten line heaters, two heater treaters, six oil tanks, six water tanks, oil loading operations and a dehydrator at the facility (see Appendix A) associated with this proposed project. Emissions estimates of criteria pollutant, greenhouse gases (GHG), hazardous air pollutants (HAP), and toxic air pollutants (TAP) were based on emission factors from AP-42, operation of 8,760 hours per year, manufacturer data, and process information specific to the facility for this proposed project.

Pre-Project Potential to Emit

Pre-project Potential to Emit is used to establish the change in emissions at a facility as a result of this project.

The following table presents the pre-project potential to emit for all criteria and GHG pollutants from all emissions units at the facility as submitted by the Applicant and verified by DEQ staff. See Appendix A for a detailed presentation of the calculations of these emissions for each emissions unit.
Table 2 PRE-PROJECT POTENTIAL TO EMIT FOR REGULATED AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Source</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>CO</th>
<th>VOC</th>
<th>CO$_2$e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
</tr>
<tr>
<td>ENG1</td>
<td>0.23</td>
<td>0.99</td>
<td>0.23</td>
<td>0.99</td>
<td>0.007</td>
<td>0.03</td>
<td>1.52</td>
</tr>
<tr>
<td>RBLR1</td>
<td>0.002</td>
<td>0.007</td>
<td>0.001</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.005</td>
<td>0.02</td>
</tr>
<tr>
<td>VPCOMB1</td>
<td>0.02</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
<td>0.0001</td>
<td>0.005</td>
<td>0.20</td>
</tr>
<tr>
<td>LNHTR1-6</td>
<td>0.03</td>
<td>0.12</td>
<td>0.02</td>
<td>0.09</td>
<td>0.002</td>
<td>0.01</td>
<td>0.37</td>
</tr>
<tr>
<td>OILTNK</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>WATRNK</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LOAD1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>DEHY1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Pre Project Totals</td>
<td>0.28</td>
<td>1.19</td>
<td>0.26</td>
<td>1.14</td>
<td>0.01</td>
<td>0.05</td>
<td>2.11</td>
</tr>
</tbody>
</table>

a) Controlled average emission rate in pounds per hour is a daily average, based on the proposed daily operating schedule and daily limits.

b) Controlled average emission rate in tons per year is an annual average, based on the proposed annual operating schedule and annual limits.

Post Project Potential to Emit

Post project Potential to Emit is used to establish the change in emissions at a facility and to determine the facility’s classification as a result of this project. Post project Potential to Emit includes all permit limits resulting from this project.

The following table presents the post project Potential to Emit for criteria and GHG pollutants from all emissions units at the facility as determined by DEQ staff. See Appendix A for a detailed presentation of the calculations of these emissions for each emissions unit.

Table 3 POST PROJECT POTENTIAL TO EMIT FOR REGULATED AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Source</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>SO$_2$</th>
<th>NO$_x$</th>
<th>CO</th>
<th>VOC</th>
<th>CO$_2$e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
<td>T/yr(b)</td>
<td>lb/hr(a)</td>
</tr>
<tr>
<td>ENG1</td>
<td>0.10</td>
<td>0.45</td>
<td>0.10</td>
<td>0.45</td>
<td>0.003</td>
<td>0.01</td>
<td>0.91</td>
</tr>
<tr>
<td>RBLR1</td>
<td>0.002</td>
<td>0.007</td>
<td>0.001</td>
<td>0.005</td>
<td>0.0001</td>
<td>0.005</td>
<td>0.02</td>
</tr>
<tr>
<td>VPCOMB1</td>
<td>0.02</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
<td>0.0001</td>
<td>0.005</td>
<td>0.20</td>
</tr>
<tr>
<td>LNHTR1-10</td>
<td>0.05</td>
<td>0.22</td>
<td>0.04</td>
<td>0.16</td>
<td>0.004</td>
<td>0.02</td>
<td>0.65</td>
</tr>
<tr>
<td>OILTNK</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>WATRNK</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>LOAD1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>DEHY1</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>HTRR1-2</td>
<td>0.02</td>
<td>0.09</td>
<td>0.02</td>
<td>0.07</td>
<td>0.002</td>
<td>0.008</td>
<td>0.28</td>
</tr>
<tr>
<td>Post Project Totals</td>
<td>0.19</td>
<td>0.84</td>
<td>0.17</td>
<td>0.74</td>
<td>0.01</td>
<td>0.04</td>
<td>2.06</td>
</tr>
</tbody>
</table>

a) Controlled average emission rate in pounds per hour is a daily average, based on the proposed daily operating schedule and daily limits.

b) Controlled average emission rate in tons per year is an annual average, based on the proposed annual operating schedule and annual limits.

Change in Potential to Emit

The change in facility-wide potential to emit is used to determine if a public comment period may be required and to determine the processing fee per IDAPA 58.01.01.225. The following table presents the facility-wide change in the potential to emit for criteria pollutants.
Table 4 CHANGES IN POTENTIAL TO EMIT FOR REGULATED AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Source</th>
<th>PM$_{10}$</th>
<th>T/yr</th>
<th>PM$_{2.5}$</th>
<th>T/yr</th>
<th>SO$_2$</th>
<th>T/yr</th>
<th>NO$_x$</th>
<th>T/yr</th>
<th>CO</th>
<th>T/yr</th>
<th>VOC</th>
<th>T/yr</th>
<th>CO$_{2e}$</th>
<th>T/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-Project Potential to Emit</td>
<td>0.28</td>
<td>1.19</td>
<td>0.26</td>
<td>1.14</td>
<td>0.01</td>
<td>0.05</td>
<td>2.11</td>
<td>9.24</td>
<td>3.59</td>
<td>16.76</td>
<td>7.53</td>
<td>28.47</td>
<td>1857</td>
<td>8133.1</td>
</tr>
<tr>
<td>Post Project Potential to Emit</td>
<td>0.19</td>
<td>0.84</td>
<td>0.17</td>
<td>0.74</td>
<td>0.01</td>
<td>0.04</td>
<td>2.06</td>
<td>9.07</td>
<td>3.33</td>
<td>14.56</td>
<td>6.04</td>
<td>24.66</td>
<td>2054.2</td>
<td>8997.2</td>
</tr>
<tr>
<td>Changes in Potential to Emit</td>
<td>-0.09</td>
<td>-0.35</td>
<td>-0.09</td>
<td>-0.4</td>
<td>0</td>
<td>-0.01</td>
<td>-0.05</td>
<td>-0.17</td>
<td>-0.26</td>
<td>-2.2</td>
<td>-1.49</td>
<td>-3.81</td>
<td>197.2</td>
<td>864.1</td>
</tr>
</tbody>
</table>

Non-Carcinogenic TAP Emissions

A summary of the estimated PTE for emissions increase of non-carcinogenic toxic air pollutants (TAP) is provided in the following table.

Pre- and post-project, as well as the change in, non-carcinogenic TAP emissions are presented in the following table:

Table 5 PRE- AND POST PROJECT POTENTIAL TO EMIT FOR NON-CARCINOGENIC TOXIC AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Non-Carcinogenic Toxic Air Pollutants</th>
<th>Pre-Project 24-hour Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Post Project 24-hour Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Change in 24-hour Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Non-Carcinogenic Screening Emission Level (lb/hr)</th>
<th>Exceeds Screening Level? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexane</td>
<td>1.3E-03</td>
<td>1.2E-03</td>
<td>-0.0001</td>
<td>70</td>
<td>No</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>1.1E-03</td>
<td>1.1E-03</td>
<td>-0.00004</td>
<td>29</td>
<td>No</td>
</tr>
<tr>
<td>Heptane</td>
<td>5.4E-03</td>
<td>4.9E-03</td>
<td>-0.0004</td>
<td>109</td>
<td>No</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>8.7E-03</td>
<td>8.0E-03</td>
<td>-0.0007</td>
<td>12</td>
<td>No</td>
</tr>
<tr>
<td>Methylcyclohexane</td>
<td>1.1E-03</td>
<td>1.1E-03</td>
<td>-0.0001</td>
<td>107</td>
<td>No</td>
</tr>
<tr>
<td>Pentanes</td>
<td>3.5E-02</td>
<td>3.2E-02</td>
<td>-0.0029</td>
<td>118</td>
<td>No</td>
</tr>
<tr>
<td>Toluene</td>
<td>1.1E-02</td>
<td>6.5E-03</td>
<td>-0.0042</td>
<td>25</td>
<td>No</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>1.5E-03</td>
<td>3.0E-04</td>
<td>-0.00003</td>
<td>23.3</td>
<td>No</td>
</tr>
<tr>
<td>Xylene</td>
<td>4.6E-03</td>
<td>3.4E-03</td>
<td>-0.0013</td>
<td>29</td>
<td>No</td>
</tr>
</tbody>
</table>

None of the PTEs for non-carcinogenic TAP were exceeded as a result of this project. Therefore, modeling is not required for any non-carcinogenic TAP because none of the 24-hour average carcinogenic screening ELs identified in IDAPA 58.01.01.585 were exceeded.

Carcinogenic TAP Emissions

A summary of the estimated PTE for emissions increase of carcinogenic toxic air pollutants (TAP) is provided in the following table.
Table 6 PRE- AND POST PROJECT POTENTIAL TO EMIT FOR CARCINOGENIC TOXIC AIR POLLUTANTS

<table>
<thead>
<tr>
<th>Carcinogenic Toxic Air Pollutants</th>
<th>Pre-Project Annual Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Post Project Annual Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Change in Annual Average Emissions Rates for Units at the Facility (lb/hr)</th>
<th>Carcinogenic Screening Emission Level (lb/hr)</th>
<th>Exceeds Screening Level? (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>2.37E-02</td>
<td>1.21E-02</td>
<td>-0.1116</td>
<td>8.00E-04</td>
<td>No</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>5.97E-01</td>
<td>4.8E-01</td>
<td>-0.1177</td>
<td>5.10E-04</td>
<td>No</td>
</tr>
</tbody>
</table>

None of the PTEs for carcinogenic TAP were exceeded as a result of this project. Therefore, modeling is not required for any carcinogenic TAP because none of the annual average carcinogenic screening ELs identified in IDAPA 58.01.01.586 were exceeded.

Post Project HAP Emissions

The following table presents the post project potential to emit for HAP pollutants from all emissions units at the facility as submitted by the Applicant and verified by DEQ staff. See Appendix A for a detailed presentation of the calculations of these emissions for each emissions unit.

Table 7 HAZARDOUS AIR POLLUTANTS EMISSIONS POTENTIAL TO EMIT SUMMARY

<table>
<thead>
<tr>
<th>Hazardous Air Pollutants</th>
<th>PTE (T/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>2.10</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.05</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.03</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.004</td>
</tr>
<tr>
<td>Xylene</td>
<td>0.015</td>
</tr>
<tr>
<td>n-Hexane</td>
<td>0.03</td>
</tr>
<tr>
<td>2,2,4-Trimethylpentane</td>
<td>0.001</td>
</tr>
<tr>
<td>Totals</td>
<td>2.23</td>
</tr>
</tbody>
</table>

The estimated PTE for all federally listed HAPs combined is below 25 T/yr and no PTE for a federally listed HAP exceeds 10 T/yr. Therefore, this facility is not a major source for HAPs.

Ambient Air Quality Impact Analyses

Emissions will not increase as a result of this permitting action, thus the ambient impact analysis is not required.

REGULATORY ANALYSIS

Attainment Designation (40 CFR 81.313)

The facility is located in Payette County, which is designated as attainment or unclassifiable for PM_{2.5}, PM_{10}, SO_{2}, NO_{2}, CO, and Ozone. Refer to 40 CFR 81.313 for additional information.

Facility Classification

The facility will remain a synthetic minor source for VOCs.
Permit to Construct (IDAPA 58.01.01.201)

IDAPA 58.01.01.201 ..Permit to Construct Required

The permittee has requested that a PTC be issued to the facility for the modified emissions source. Therefore, a permit to construct is required to be issued in accordance with IDAPA 58.01.01.220. This permitting action was processed in accordance with the procedures of IDAPA 58.01.01.200-228.

Tier II Operating Permit (IDAPA 58.01.01.401)

IDAPA 58.01.01.401 ..Tier II Operating Permit

The application was submitted for a permit to construct (refer to the Permit to Construct section), and an optional Tier II operating permit has not been requested. Therefore, the procedures of IDAPA 58.01.01.400-410 were not applicable to this permitting action.

Standards for New Sources (IDAPA 58.01.01.676)

IDAPA 58.01.01.676 ...Standards for New Sources

The fuel burning equipment located at this facility, with a maximum rated input of ten (10) million BTU per hour or more, are subject to a particulate matter limitation of 0.015 gr/dscf of effluent gas corrected to 3% oxygen by volume when burning gaseous fuels. Fuel-Burning Equipment is defined as any furnace, boiler, apparatus, stack and all appurtenances thereto, used in the process of burning fuel for the primary purpose of producing heat or power by indirect heat transfer. This requirement is assured by Permit Condition 2.3.

Title V Classification (IDAPA 58.01.01.300, 40 CFR Part 70)

IDAPA 58.01.01.301 ..Requirement to Obtain Tier I Operating Permit

Post project facility-wide emissions from this facility do not have a potential to emit greater than 100 tons per year for PM$_{10}$, SO$_2$, NO$_x$, CO$_2$ and VOC or 10 tons per year for any one HAP or 25 tons per year for all HAP combined as demonstrated previously in the Emissions Inventories Section of this analysis. Therefore, the facility is not a Tier I source in accordance with IDAPA 58.01.01.006 and the requirements of IDAPA 58.01.01.301 do not apply.

PSD Classification (40 CFR 52.21)

40 CFR 52.21 ..Prevention of Significant Deterioration of Air Quality

The facility is not a major stationary source as defined in 40 CFR 52.21(b)(1), nor is it undergoing any physical change at a stationary source not otherwise qualifying under paragraph 40 CFR 52.21(b)(1) as a major stationary source, that would constitute a major stationary source by itself as defined in 40 CFR 52. Therefore in accordance with 40 CFR 52.21(a)(2), PSD requirements are not applicable to this permitting action. The facility is not a designated facility as defined in 40 CFR 52.21(b)(1)(i)(a), and does not have facility-wide emissions of any criteria pollutant that exceed 250 T/yr.

NSPS Applicability (40 CFR 60)

The facility is subject to the requirements of 40 CFR 60 Subpart OOOO – Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution. Below is a breakdown of Subpart OOOO. DEQ is delegated this Subpart.

40 CFR 60, Subpart OOOO ...Standards of Performance for Crude Oil and Natural Gas Production, Transmission, and Distribution

§60.5365 Am I subject to this subpart?

You are subject to the applicable provisions of this subpart if you are the owner or operator of one or more of the onshore affected facilities listed in paragraphs (a) through (g) of this section for which you commence construction, modification or reconstruction after August 23, 2011.
(a) Each gas well affected facility, which is a single natural gas well.

The facility is not a gas well affected facility.

(b) Each centrifugal compressor affected facility, which is a single centrifugal compressor using wet seals that is located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment. A centrifugal compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.

The facility has internal reciprocating compressors/engines. The facility is not using a single centrifugal compressor using wet seals.

(c) Each reciprocating compressor affected facility, which is a single reciprocating compressor located between the wellhead and the point of custody transfer to the natural gas transmission and storage segment. A reciprocating compressor located at a well site, or an adjacent well site and servicing more than one well site, is not an affected facility under this subpart.

The facility is not subject to this portion of the rule as there are no single reciprocating compressors servicing a single well site.

(d)(1) For the oil production segment (between the wellhead and the point of custody transfer to an oil pipeline), each pneumatic controller affected facility, which is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh.

The facility is not part of the oil production segment.

(2) For the natural gas production segment (between the wellhead and the point of custody transfer to the natural gas transmission and storage segment and not including natural gas processing plants), each pneumatic controller affected facility, which is a single continuous bleed natural gas-driven pneumatic controller operating at a natural gas bleed rate greater than 6 scfh.

The facility is a natural gas processing plant.

(3) For natural gas processing plants, each pneumatic controller affected facility, which is a single continuous bleed natural gas-driven pneumatic controller.

The facility is a natural gas processing plant subject to this rule. Any single continuous bleed natural gas driven pneumatic controllers are affected under this subpart.

(e) Each storage vessel affected facility, which is a single storage vessel located in the oil and natural gas production segment, natural gas processing segment or natural gas transmission and storage segment, and has the potential for VOC emissions equal to or greater than 6 tpy as determined according to this section by October 15, 2013 for Group 1 storage vessels and by April 15, 2014, or 30 days after startup (whichever is later) for Group 2 storage vessels. A storage vessel affected facility that subsequently has its potential for VOC emissions decrease to less than 6 tpy shall remain an affected facility under this subpart. The potential for VOC emissions must be calculated using a generally accepted model or calculation methodology, based on the maximum average daily throughput determined for a 30 day period of production prior to the applicable emission determination deadline specified in this section. The determination may take into account requirements under a legally and practically enforceable limit in an operating permit or other requirement established under a Federal, State, local or tribal authority. Any vapor from the storage vessel that is recovered and routed to a process through a VRU designed and operated as specified in this section is not required to be included in the determination of VOC potential to emit for purposes of determining affected facility status, provided you comply with the requirements in paragraphs (e)(1) through (4) of this section.

(1) You meet the cover requirements specified in §60.5411(b).

(2) You meet the closed vent system requirements specified in §60.5411(c).

(3) You maintain records that document compliance with paragraphs (e)(1) and (2) of this section.
(4) In the event of removal of apparatus that recovers and routes vapor to a process, or operation that is inconsistent with the conditions specified in paragraphs (e)(1) and (2) of this section, you must determine the storage vessel's potential for VOC emissions according to this section within 30 days of such removal or operation.

Emissions from storage vessel affected facilities satisfy any potentially applicable requirements.

(f) The group of all equipment, except compressors, within a process unit is an affected facility.

(1) Addition or replacement of equipment for the purpose of process improvement that is accomplished without a capital expenditure shall not by itself be considered a modification under this subpart.

(2) Equipment associated with a compressor station, dehydration unit, sweetening unit, underground storage vessel, field gas gathering system, or liquefied natural gas unit is covered by §§60.5400, 60.5401, 60.5402, 60.5421, and 60.5422 of this subpart if it is located at an onshore natural gas processing plant. Equipment not located at the onshore natural gas processing plant site is exempt from the provisions of §§60.5400, 60.5401, 60.5402, 60.5421, and 60.5422 of this subpart.

(3) The equipment within a process unit of an affected facility located at onshore natural gas processing plants and described in paragraph (f) of this section are exempt from this subpart if they are subject to and controlled according to subparts VV(a), GGG or GGG(a) of this part.

The facility is not an affected facility under this portion of the rule. The facility has no equipment that is subject to and controlled according to subparts VV(a), GGG, or GGG(a).

(g) Sweetening units located at onshore natural gas processing plants that process natural gas produced from either onshore or offshore wells.

(1) Each sweetening unit that processes natural gas is an affected facility; and

(2) Each sweetening unit that processes natural gas followed by a sulfur recovery unit is an affected facility.

(3) Facilities that have a design capacity less than 2 long tons per day (LT/D) of hydrogen sulfide (H2S) in the acid gas (expressed as sulfur) are required to comply with recordkeeping and reporting requirements specified in §60.5423(c) but are not required to comply with §§60.5405 through 60.5407 and §§60.5410(g) and 60.5415(g) of this subpart.

(4) Sweetening facilities producing acid gas that is completely reinjected into oil-or-gas-bearing geologic strata or that is otherwise not released to the atmosphere are not subject to §§60.5405 through 60.5407, 60.5410(g), 60.5415(g), and 60.5423 of this subpart.

The facility does not have a sweetening unit.

(h) The following provisions apply to gas well facilities that are hydraulically refractured.

(1) A gas well facility that conducts a well completion operation following hydraulic refracturing is not an affected facility, provided that the requirements of §60.5375 are met. For purposes of this provision, the dates specified in §60.5375(a) do not apply, and such facilities, as of October 15, 2012, must meet the requirements of §60.5375(a)(1) through (4).

(2) A well completion operation following hydraulic refracturing at a gas well facility not conducted pursuant to §60.5375 is a modification to the gas well affected facility.

(3) Refracturing of a gas well facility does not affect the modification status of other equipment, process units, storage vessels, compressors, or pneumatic controllers located at the well site.

(4) A gas well facility initially constructed after August 23, 2011, is considered an affected facility regardless of this provision.

The facility is not a gas well affected facility under this subpart.
§60.5370 When must I comply with this subpart?

(a) You must be in compliance with the standards of this subpart no later than October 15, 2012 or upon startup, whichever is later.

(b) The provisions for exemption from compliance during periods of startup, shutdown and malfunctions provided for in 40 CFR 60.8(c) do not apply to this subpart.

(c) You are exempt from the obligation to obtain a permit under 40 CFR part 70 or 40 CFR part 71, provided you are not otherwise required by law to obtain a permit under 40 CFR 70.3(a) or 40 CFR 71.3(a). Notwithstanding the previous sentence, you must continue to comply with the provisions of this subpart.

The facility must comply with this subpart upon startup.

§60.5375 What standards apply to gas well affected facilities?

The facility is not a gas well affected facility and therefore is not subject to the requirements in §60.5375.

§60.5380 What standards apply to centrifugal compressor affected facilities?

The facility is not a centrifugal compressor affected facility and therefore is not subject to the requirements in §60.5380.

§60.5385 What standards apply to reciprocating compressor affected facilities?

The facility is not a reciprocating compressor affected facility and therefore is not subject to the requirements in §60.5385.

§60.5390 What standards apply to pneumatic controller affected facilities?

For each pneumatic controller affected facility you must comply with the VOC standards, based on natural gas as a surrogate for VOC, in either paragraph (b)(1) or (c)(1) of this section, as applicable. Pneumatic controllers meeting the conditions in paragraph (a) of this section are exempt from this requirement.

(a) The requirements of paragraph (b)(1) or (c)(1) of this section are not required if you determine that the use of a pneumatic controller affected facility with a bleed rate greater than the applicable standard is required based on functional needs, including but not limited to response time, safety and positive actuation. However, you must tag such pneumatic controller with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that pneumatic controller, as required in §60.5420(c)(4)(ii).

(b)(1) Each pneumatic controller affected facility at a natural gas processing plant must have a bleed rate of zero.

(2) Each pneumatic controller affected facility at a natural gas processing plant must be tagged with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that pneumatic controller as required in §60.5420(c)(4)(iv).

(c)(1) Each pneumatic controller affected facility constructed, modified or reconstructed on or after October 15, 2013, at a location between the wellhead and a natural gas processing plant or the point of custody transfer to an oil pipeline must have a bleed rate less than or equal to 6 standard cubic feet per hour.

(2) Each pneumatic controller affected facility at a location between the wellhead and a natural gas processing plant or the point of custody transfer to an oil pipeline must be tagged with the month and year of installation, reconstruction or modification, and identification information that allows traceability to the records for that controller as required in §60.5420(c)(4)(iii).

(d) You must demonstrate initial compliance with standards that apply to pneumatic controller affected facilities as required by §60.5410.

(e) You must demonstrate continuous compliance with standards that apply to pneumatic controller affected facilities as required by §60.5415.

(f) You must perform the required notification, recordkeeping, and reporting as required by §60.5420, except that you are not required to submit the notifications specified in §60.5420(a).
The facility does not currently have pneumatic controllers falling under these requirements. Should pneumatic controllers be installed, the controllers will be subject to the above requirements.

§60.5395 What standards apply to storage vessel affected facilities?
The facility is not a storage vessel affected facility.

§60.5400 What equipment leak standards apply to affected facilities at an onshore natural gas processing plant?

This section applies to the group of all equipment, except compressors, within a process unit.

(a) You must comply with the requirements of §§60.482-1a(a), (b), and (d), 60.482-2a, and 60.482-4a through 60.482-11a, except as provided in §60.5401.

The facility must comply with these requirements. Below are the requirements of Subpart VV as referenced above:

§60.482-1a Standards: General.

(a) Each owner or operator subject to the provisions of this subpart shall demonstrate compliance with the requirements of §§60.482-1a through 60.482-10a or §60.480a(e) for all equipment within 180 days of initial startup.

(b) Compliance with §§60.482-1a to 60.482-10a will be determined by review of records and reports, review of performance test results, and inspection using the methods and procedures specified in §60.485a.

(d) Equipment that is in vacuum service is excluded from the requirements of §§60.482-2a through 60.482-10a if it is identified as required in §60.486a(e)(5).

§60.482-2a Standards: Pumps in light liquid service.

(a)(1) Each pump in light liquid service shall be monitored monthly to detect leaks by the methods specified in §60.485a(b), except as provided in §60.482-1a(c) and (f) and paragraphs (d), (e), and (f) of this section. A pump that begins operation in light liquid service after the initial startup date for the process unit must be monitored for the first time within 30 days after the end of its startup period, except for a pump that replaces a leaking pump and except as provided in §60.482-1a(c) and paragraphs (d), (e), and (f) of this section.

(2) Each pump in light liquid service shall be checked by visual inspection each calendar week for indications of liquids dripping from the pump seal, except as provided in §60.482-1a(f).

(b)(1) The instrument reading that defines a leak is specified in paragraphs (b)(1)(i) and (ii) of this section.

(i) 5,000 parts per million (ppm) or greater for pumps handling polymerizing monomers;
(ii) 2,000 ppm or greater for all other pumps.

(2) If there are indications of liquids dripping from the pump seal, the owner or operator shall follow the procedure specified in either paragraph (b)(2)(i) or (ii) of this section. This requirement does not apply to a pump that was monitored after a previous weekly inspection and the instrument reading was less than the concentration specified in paragraph (b)(1)(i) or (ii) of this section, whichever is applicable.

(i) Monitor the pump within 5 days as specified in §60.485a(b). A leak is detected if the instrument reading measured during monitoring indicates a leak as specified in paragraph (b)(1)(i) or (ii) of this section, whichever is applicable. The leak shall be repaired using the procedures in paragraph (c) of this section.

(ii) Designate the visual indications of liquids dripping as a leak, and repair the leak using either the procedures in paragraph (c) of this section or by eliminating the visual indications of liquids dripping.
(c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482-9a.

(2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected. First attempts at repair include, but are not limited to, the practices described in paragraphs (c)(2)(i) and (ii) of this section, where practicable.

(i) Tightening the packing gland nuts;

(ii) Ensuring that the seal flush is operating at design pressure and temperature.

(d) Each pump equipped with a dual mechanical seal system that includes a barrier fluid system is exempt from the requirements of paragraph (a) of this section, provided the requirements specified in paragraphs (d)(1) through (6) of this section are met.

(1) Each dual mechanical seal system is:

(i) Operated with the barrier fluid at a pressure that is at all times greater than the pump stuffing box pressure; or

(ii) Equipped with a barrier fluid degassing reservoir that is routed to a process or fuel gas system or connected by a closed vent system to a control device that complies with the requirements of §60.482-10a; or

(iii) Equipped with a system that purges the barrier fluid into a process stream with zero VOC emissions to the atmosphere.

(2) The barrier fluid system is in heavy liquid service or is not in VOC service.

(3) Each barrier fluid system is equipped with a sensor that will detect failure of the seal system, the barrier fluid system, or both.

(4)(i) Each pump is checked by visual inspection, each calendar week, for indications of liquids dripping from the pump seals.

(ii) If there are indications of liquids dripping from the pump seal at the time of the weekly inspection, the owner or operator shall follow the procedure specified in either paragraph (d)(4)(ii)(A) or (B) of this section prior to the next required inspection.

(A) Monitor the pump within 5 days as specified in §60.485a(b) to determine if there is a leak of VOC in the barrier fluid. If an instrument reading of 2,000 ppm or greater is measured, a leak is detected.

(B) Designate the visual indications of liquids dripping as a leak.

(5)(i) Each sensor as described in paragraph (d)(3) is checked daily or is equipped with an audible alarm.

(ii) The owner or operator determines, based on design considerations and operating experience, a criterion that indicates failure of the seal system, the barrier fluid system, or both.

(iii) If the sensor indicates failure of the seal system, the barrier fluid system, or both, based on the criterion established in paragraph (d)(5)(ii) of this section, a leak is detected.

(6)(i) When a leak is detected pursuant to paragraph (d)(4)(ii)(A) of this section, it shall be repaired as specified in paragraph (c) of this section.

(ii) A leak detected pursuant to paragraph (d)(5)(iii) of this section shall be repaired within 15 days of detection by eliminating the conditions that activated the sensor.

(iii) A designated leak pursuant to paragraph (d)(4)(ii)(B) of this section shall be repaired within 15 days of detection by eliminating visual indications of liquids dripping.

(e) Any pump that is designated, as described in §60.486a(e)(1) and (2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraphs (a), (c), and (d) of this section if the pump:
(1) Has no externally actuated shaft penetrating the pump housing;

(2) Is demonstrated to be operating with no detectable emissions as indicated by an instrument reading of less than 500 ppm above background as measured by the methods specified in §60.485a(c); and

(3) Is tested for compliance with paragraph (e)(2) of this section initially upon designation, annually, and at other times requested by the Administrator.

(f) If any pump is equipped with a closed vent system capable of capturing and transporting any leakage from the seal or seals to a process or to a fuel gas system or to a control device that complies with the requirements of §60.482-10a, it is exempt from paragraphs (a) through (e) of this section.

(g) Any pump that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor pump is exempt from the monitoring and inspection requirements of paragraphs (a) and (d)(4) through (6) of this section if:

(1) The owner or operator of the pump demonstrates that the pump is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section; and

(2) The owner or operator of the pump has a written plan that requires monitoring of the pump as frequently as practicable during safe-to-monitor times, but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (c) of this section if a leak is detected.

(h) Any pump that is located within the boundary of an unmanned plant site is exempt from the weekly visual inspection requirement of paragraphs (a)(2) and (d)(4) of this section, and the daily requirements of paragraph (d)(5) of this section, provided that each pump is visually inspected as often as practicable and at least monthly.

§60.482-4a Standards: Pressure relief devices in gas/vapor service.

(a) Except during pressure releases, each pressure relief device in gas/vapor service shall be operated with no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as determined by the methods specified in §60.485a(c).

(b)(1) After each pressure release, the pressure relief device shall be returned to a condition of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, as soon as practicable, but no later than 5 calendar days after the pressure release, except as provided in §60.482-9a.

(2) No later than 5 calendar days after the pressure release, the pressure relief device shall be monitored to confirm the conditions of no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, by the methods specified in §60.485a(c).

(c) Any pressure relief device that is routed to a process or fuel gas system or equipped with a closed vent system capable of capturing and transporting leakage through the pressure relief device to a control device as described in §60.482-10a is exempted from the requirements of paragraphs (a) and (b) of this section.

(d)(1) Any pressure relief device that is equipped with a rupture disk upstream of the pressure relief device is exempt from the requirements of paragraphs (a) and (b) of this section, provided the owner or operator complies with the requirements in paragraph (d)(2) of this section.

(2) After each pressure release, a new rupture disk shall be installed upstream of the pressure relief device as soon as practicable, but no later than 5 calendar days after each pressure release, except as provided in §60.482-9a.

§60.482-5a Standards: Sampling connection systems.

(a) Each sampling connection system shall be equipped with a closed-purge, closed-loop, or closed-vent system, except as provided in §60.482-1a(c) and paragraph (c) of this section.
(b) Each closed-purge, closed-loop, or closed-vent system as required in paragraph (a) of this section shall comply with the requirements specified in paragraphs (b)(1) through (4) of this section.

(1) Gases displaced during filling of the sample container are not required to be collected or captured.

(2) Containers that are part of a closed-purge system must be covered or closed when not being filled or emptied.

(3) Gases remaining in the tubing or piping between the closed-purge system valve(s) and sample container valve(s) after the valves are closed and the sample container is disconnected are not required to be collected or captured.

(4) Each closed-purge, closed-loop, or closed-vent system shall be designed and operated to meet requirements in either paragraph (b)(4)(i), (ii), (iii), or (iv) of this section.

(i) Return the purged process fluid directly to the process line.

(ii) Collect and recycle the purged process fluid to a process.

(iii) Capture and transport all the purged process fluid to a control device that complies with the requirements of §60.482-10a.

(iv) Collect, store, and transport the purged process fluid to any of the following systems or facilities:

(A) A waste management unit as defined in 40 CFR 63.111, if the waste management unit is subject to and operated in compliance with the provisions of 40 CFR part 63, subpart G, applicable to Group 1 wastewater streams;

(B) A treatment, storage, or disposal facility subject to regulation under 40 CFR part 262, 264, 265, or 266;

(C) A facility permitted, licensed, or registered by a state to manage municipal or industrial solid waste, if the process fluids are not hazardous waste as defined in 40 CFR part 261;

(D) A waste management unit subject to and operated in compliance with the treatment requirements of 40 CFR 61.348(a), provided all waste management units that collect, store, or transport the purged process fluid to the treatment unit are subject to and operated in compliance with the management requirements of 40 CFR 61.343 through 40 CFR 61.347; or

(E) A device used to burn off-specification used oil for energy recovery in accordance with 40 CFR part 279, subpart G, provided the purged process fluid is not hazardous waste as defined in 40 CFR part 261.

(c) In-situ sampling systems and sampling systems without purges are exempt from the requirements of paragraphs (a) and (b) of this section.

§60.482-6a Standards: Open-ended valves or lines.

(a)(1) Each open-ended valve or line shall be equipped with a cap, blind flange, plug, or a second valve, except as provided in §60.482-1a(c) and paragraphs (d) and (e) of this section.

(2) The cap, blind flange, plug, or second valve shall seal the open end at all times except during operations requiring process fluid flow through the open-ended valve or line.

(b) Each open-ended valve or line equipped with a second valve shall be operated in a manner such that the valve on the process fluid end is closed before the second valve is closed.

(c) When a double block-and-bleed system is being used, the bleed valve or line may remain open during operations that require venting the line between the block valves but shall comply with paragraph (a) of this section at all other times.

(d) Open-ended valves or lines in an emergency shutdown system which are designed to open automatically in the event of a process upset are exempt from the requirements of paragraphs (a), (b), and (c) of this section.
(e) Open-ended valves or lines containing materials which would autocatalytically polymerize or would present an explosion, serious overpressure, or other safety hazard if capped or equipped with a double block and bleed system as specified in paragraphs (a) through (c) of this section are exempt from the requirements of paragraphs (a) through (c) of this section.

§60.482-7a Standards: Valves in gas/vapor service and in light liquid service.

(a)(1) Each valve shall be monitored monthly to detect leaks by the methods specified in §60.485a(b) and shall comply with paragraphs (b) through (e) of this section, except as provided in paragraphs (f), (g), and (h) of this section, §60.482-1a(c) and (f), and §§60.483-1a and 60.483-2a.

(2) A valve that begins operation in gas/vapor service or light liquid service after the initial startup date for the process unit must be monitored according to paragraphs (a)(2)(i) or (ii), except for a valve that replaces a leaking valve and except as provided in paragraphs (f), (g), and (h) of this section, §60.482-1a(c), and §§60.483-1a and 60.483-2a.

(i) Monitor the valve as in paragraph (a)(1) of this section. The valve must be monitored for the first time within 30 days after the end of its startup period to ensure proper installation.

(ii) If the existing valves in the process unit are monitored in accordance with §60.483-1a or §60.483-2a, count the new valve as leaking when calculating the percentage of valves leaking as described in §60.483-2a(b)(5). If less than 2.0 percent of the valves are leaking for that process unit, the valve must be monitored for the first time during the next scheduled monitoring event for existing valves in the process unit or within 90 days, whichever comes first.

(b) If an instrument reading of 500 ppm or greater is measured, a leak is detected.

(c)(1)(i) Any valve for which a leak is not detected for 2 successive months may be monitored the first month of every quarter, beginning with the next quarter, until a leak is detected.

(ii) As an alternative to monitoring all of the valves in the first month of a quarter, an owner or operator may elect to subdivide the process unit into two or three subgroups of valves and monitor each subgroup in a different month during the quarter, provided each subgroup is monitored every 3 months. The owner or operator must keep records of the valves assigned to each subgroup.

(2) If a leak is detected, the valve shall be monitored monthly until a leak is not detected for 2 successive months.

(d)(1) When a leak is detected, it shall be repaired as soon as practicable, but no later than 15 calendar days after the leak is detected, except as provided in §60.482-9a.

(2) A first attempt at repair shall be made no later than 5 calendar days after each leak is detected.

(e) First attempts at repair include, but are not limited to, the following best practices where practicable:

(1) Tightening of bonnet bolts;
(2) Replacement of bonnet bolts;
(3) Tightening of packing gland nuts;
(4) Injection of lubricant into lubricated packing.

(f) Any valve that is designated, as described in §60.486a(e)(2), for no detectable emissions, as indicated by an instrument reading of less than 500 ppm above background, is exempt from the requirements of paragraph (a) of this section if the valve:

(1) Has no external actuating mechanism in contact with the process fluid,
(2) Is operated with emissions less than 500 ppm above background as determined by the method specified in §60.485a(c), and
(3) Is tested for compliance with paragraph (f)(2) of this section initially upon designation, annually, and at other times requested by the Administrator.
(g) Any valve that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:

(1) The owner or operator of the valve demonstrates that the valve is unsafe to monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraph (a) of this section, and

(2) The owner or operator of the valve adheres to a written plan that requires monitoring of the valve as frequently as practicable during safe-to-monitor times.

(h) Any valve that is designated, as described in §60.486a(f)(2), as a difficult-to-monitor valve is exempt from the requirements of paragraph (a) of this section if:

(1) The owner or operator of the valve demonstrates that the valve cannot be monitored without elevating the monitoring personnel more than 2 meters above a support surface.

(2) The process unit within which the valve is located either:

(i) Becomes an affected facility through §60.14 or §60.15 and was constructed on or before January 5, 1981; or

(ii) Has less than 3.0 percent of its total number of valves designated as difficult-to-monitor by the owner or operator.

(3) The owner or operator of the valve follows a written plan that requires monitoring of the valve at least once per calendar year.

§60.482-8a Standards: Pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service.

(a) If evidence of a potential leak is found by visual, audible, olfactory, or any other detection method at pumps, valves, and connectors in heavy liquid service and pressure relief devices in light liquid or heavy liquid service, the owner or operator shall follow either one of the following procedures:

(1) The owner or operator shall monitor the equipment within 5 days by the method specified in §60.485a(b) and shall comply with the requirements of paragraphs (b) through (d) of this section.

(2) The owner or operator shall eliminate the visual, audible, olfactory, or other indication of a potential leak within 5 calendar days of detection.

(b) If an instrument reading of 10,000 ppm or greater is measured, a leak is detected.

(c)(1) When a leak is detected, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482-9a.

(2) The first attempt at repair shall be made no later than 5 calendar days after each leak is detected.

(d) First attempts at repair include, but are not limited to, the best practices described under §§60.482-2a(c)(2) and 60.482-7a(e).

§60.482-9a Standards: Delay of repair.

(a) Delay of repair of equipment for which leaks have been detected will be allowed if repair within 15 days is technically infeasible without a process unit shutdown. Repair of this equipment shall occur before the end of the next process unit shutdown. Monitoring to verify repair must occur within 15 days after startup of the process unit.

(b) Delay of repair of equipment will be allowed for equipment which is isolated from the process and which does not remain in VOC service.

(c) Delay of repair for valves and connectors will be allowed if:

(1) The owner or operator demonstrates that emissions of purged material resulting from immediate repair are greater than the fugitive emissions likely to result from delay of repair, and
(2) When repair procedures are effected, the purged material is collected and destroyed or recovered in a control device complying with §60.482-10a.

(d) Delay of repair will be allowed if:

(1) Repair requires the use of a dual mechanical seal system that includes a barrier fluid system, and

(2) Repair is completed as soon as practicable, but not later than 6 months after the leak was detected.

(e) Delay of repair beyond a process unit shutdown will be allowed for a valve, if valve assembly replacement is necessary during the process unit shutdown, valve assembly supplies have been depleted, and valve assembly supplies had been sufficiently stocked before the supplies were depleted. Delay of repair beyond the next process unit shutdown will not be allowed unless the next process unit shutdown occurs sooner than 6 months after the first process unit shutdown.

(f) When delay of repair is allowed for a leaking pump, valve, or connector that remains in service, the pump, valve, or connector may be considered to be repaired and no longer subject to delay of repair requirements if two consecutive monthly monitoring instrument readings are below the leak definition.

§60.482-10a Standards: Closed vent systems and control devices.

(a) Owners or operators of closed vent systems and control devices used to comply with provisions of this subpart shall comply with the provisions of this section.

(b) Vapor recovery systems (for example, condensers and absorbers) shall be designed and operated to recover the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 parts per million by volume (ppmv), whichever is less stringent.

(c) Enclosed combustion devices shall be designed and operated to reduce the VOC emissions vented to them with an efficiency of 95 percent or greater, or to an exit concentration of 20 ppmv, on a dry basis, corrected to 3 percent oxygen, whichever is less stringent or to provide a minimum residence time of 0.75 seconds at a minimum temperature of 816 °C.

(d) Flares used to comply with this subpart shall comply with the requirements of §60.18.

(e) Owners or operators of control devices used to comply with the provisions of this subpart shall monitor these control devices to ensure that they are operated and maintained in conformance with their designs.

(f) Except as provided in paragraphs (i) through (k) of this section, each closed vent system shall be inspected according to the procedures and schedule specified in paragraphs (f)(1) and (2) of this section.

(1) If the vapor collection system or closed vent system is constructed of hard-piping, the owner or operator shall comply with the requirements specified in paragraphs (f)(1)(i) and (ii) of this section:

(i) Conduct an initial inspection according to the procedures in §60.485a(b); and

(ii) Conduct annual visual inspections for visible, audible, or olfactory indications of leaks.

(2) If the vapor collection system or closed vent system is constructed of ductwork, the owner or operator shall:

(i) Conduct an initial inspection according to the procedures in §60.485a(b); and

(ii) Conduct annual inspections according to the procedures in §60.485a(b).

(g) Leaks, as indicated by an instrument reading greater than 500 ppmv above background or by visual inspections, shall be repaired as soon as practicable except as provided in paragraph (h) of this section.

(1) A first attempt at repair shall be made no later than 5 calendar days after the leak is detected.

(2) Repair shall be completed no later than 15 calendar days after the leak is detected.
(h) Delay of repair of a closed vent system for which leaks have been detected is allowed if the repair is technically infeasible without a process unit shutdown or if the owner or operator determines that emissions resulting from immediate repair would be greater than the fugitive emissions likely to result from delay of repair. Repair of such equipment shall be complete by the end of the next process unit shutdown.

(i) If a vapor collection system or closed vent system is operated under a vacuum, it is exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section.

(j) Any parts of the closed vent system that are designated, as described in paragraph (l)(1) of this section, as unsafe to inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (j)(1) and (2) of this section:

(1) The owner or operator determines that the equipment is unsafe to inspect because inspecting personnel would be exposed to an imminent or potential danger as a consequence of complying with paragraphs (f)(1)(i) or (f)(2) of this section; and

(2) The owner or operator has a written plan that requires inspection of the equipment as frequently as practicable during safe-to-inspect times.

(k) Any parts of the closed vent system that are designated, as described in paragraph (l)(2) of this section, as difficult to inspect are exempt from the inspection requirements of paragraphs (f)(1)(i) and (f)(2) of this section if they comply with the requirements specified in paragraphs (k)(1) through (3) of this section:

(1) The owner or operator determines that the equipment cannot be inspected without elevating the inspecting personnel more than 2 meters above a support surface; and

(2) The process unit within which the closed vent system is located becomes an affected facility through §§60.14 or 60.15, or the owner or operator designates less than 3.0 percent of the total number of closed vent system equipment as difficult to inspect; and

(3) The owner or operator has a written plan that requires inspection of the equipment at least once every 5 years. A closed vent system is exempt from inspection if it is operated under a vacuum.

(l) The owner or operator shall record the information specified in paragraphs (l)(1) through (5) of this section.

(1) Identification of all parts of the closed vent system that are designated as unsafe to inspect, an explanation of why the equipment is unsafe to inspect, and the plan for inspecting the equipment.

(2) Identification of all parts of the closed vent system that are designated as difficult to inspect, an explanation of why the equipment is difficult to inspect, and the plan for inspecting the equipment.

(3) For each inspection during which a leak is detected, a record of the information specified in §60.486a(c).

(4) For each inspection conducted in accordance with §60.485a(b) during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.

(5) For each visual inspection conducted in accordance with paragraph (f)(1)(ii) of this section during which no leaks are detected, a record that the inspection was performed, the date of the inspection, and a statement that no leaks were detected.

(m) Closed vent systems and control devices used to comply with provisions of this subpart shall be operated at all times when emissions may be vented to them.

§60.482-11a Standards: Connectors in gas/vapor service and in light liquid service.
(a) The owner or operator shall initially monitor all connectors in the process unit for leaks by the later of either 12 months after the compliance date or 12 months after initial startup. If all connectors in the process unit have been monitored for leaks prior to the compliance date, no initial monitoring is required provided either no process changes have been made since the monitoring or the owner or operator can determine that the results of the monitoring, with or without adjustments, reliably demonstrate compliance despite process changes. If required to monitor because of a process change, the owner or operator is required to monitor only those connectors involved in the process change.

(b) Except as allowed in §60.482-1(a)(c), §60.482-10a, or as specified in paragraph (e) of this section, the owner or operator shall monitor all connectors in gas and vapor and light liquid service as specified in paragraphs (a) and (b)(3) of this section.

(1) The connectors shall be monitored to detect leaks by the method specified in §60.485a(b) and, as applicable, §60.485a(c).

(2) If an instrument reading greater than or equal to 500 ppm is measured, a leak is detected.

(3) The owner or operator shall perform monitoring, subsequent to the initial monitoring required in paragraph (a) of this section, as specified in paragraphs (b)(3)(i) through (iii) of this section, and shall comply with the requirements of paragraphs (b)(3)(iv) and (v) of this section. The required period in which monitoring must be conducted shall be determined from paragraphs (b)(3)(i) through (iii) of this section using the monitoring results from the preceding monitoring period. The percent leaking connectors shall be calculated as specified in paragraph (c) of this section.

(i) If the percent leaking connectors in the process unit was greater than or equal to 0.5 percent, then monitor within 12 months (1 year).

(ii) If the percent leaking connectors in the process unit was greater than or equal to 0.25 percent but less than 0.5 percent, then monitor within 4 years. An owner or operator may comply with the requirements of this paragraph by monitoring at least 40 percent of the connectors within 2 years of the start of the monitoring period, provided all connectors have been monitored by the end of the 4-year monitoring period.

(iii) If the percent leaking connectors in the process unit was less than 0.25 percent, then monitor as provided in paragraph (b)(3)(iii)(A) of this section and either paragraph (b)(3)(iii)(B) or (b)(3)(iii)(C) of this section, as appropriate.

(A) An owner or operator shall monitor at least 50 percent of the connectors within 4 years of the start of the monitoring period.

(B) If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is greater than or equal to 0.35 percent of the monitored connectors, the owner or operator shall monitor as soon as practical, but within the next 6 months, all connectors that have not yet been monitored during the monitoring period. At the conclusion of monitoring, a new monitoring period shall be started pursuant to paragraph (b)(3) of this section, based on the percent of leaking connectors within the total monitored connectors.

(C) If the percent of leaking connectors calculated from the monitoring results in paragraph (b)(3)(iii)(A) of this section is less than 0.35 percent of the monitored connectors, the owner or operator shall monitor all connectors that have not yet been monitored within 8 years of the start of the monitoring period.

(iv) If, during the monitoring conducted pursuant to paragraphs (b)(3)(i) through (iii) of this section, a connector is found to be leaking, it shall be re-monitored once within 90 days after repair to confirm that it is not leaking.

(v) The owner or operator shall keep a record of the start date and end date of each monitoring period under this section for each process unit.
(c) For use in determining the monitoring frequency, as specified in paragraphs (a) and (b)(3) of this section, the percent leaking connectors as used in paragraphs (a) and (b)(3) of this section shall be calculated by using the following equation:

\[
\%C_L = \frac{C_L}{C_r} \times 100
\]

Where:

\(\%C_L\) = Percent of leaking connectors as determined through periodic monitoring required in paragraphs (a) and (b)(3)(i) through (iii) of this section.

\(C_L\) = Number of connectors measured at 500 ppm or greater, by the method specified in §60.485a(b).

\(C_r\) = Total number of monitored connectors in the process unit or affected facility.

(d) When a leak is detected pursuant to paragraphs (a) and (b) of this section, it shall be repaired as soon as practicable, but not later than 15 calendar days after it is detected, except as provided in §60.482-9a. A first attempt at repair as defined in this subpart shall be made no later than 5 calendar days after the leak is detected.

(e) Any connector that is designated, as described in §60.486a(f)(1), as an unsafe-to-monitor connector is exempt from the requirements of paragraphs (a) and (b) of this section if:

(1) The owner or operator of the connector demonstrates that the connector is unsafe-to-monitor because monitoring personnel would be exposed to an immediate danger as a consequence of complying with paragraphs (a) and (b) of this section; and

(2) The owner or operator of the connector has a written plan that requires monitoring of the connector as frequently as practicable during safe-to-monitor times but not more frequently than the periodic monitoring schedule otherwise applicable, and repair of the equipment according to the procedures in paragraph (d) of this section if a leak is detected.

(f) Inaccessible, ceramic, or ceramic-lined connectors. (1) Any connector that is inaccessible or that is ceramic or ceramic-lined (e.g., porcelain, glass, or glass-lined), is exempt from the monitoring requirements of paragraphs (a) and (b) of this section, from the leak repair requirements of paragraph (d) of this section, and from the recordkeeping and reporting requirements of §§63.1038 and 63.1039. An inaccessible connector is one that meets any of the provisions specified in paragraphs (f)(1)(i) through (vi) of this section, as applicable:

(i) Buried;

(ii) Insulated in a manner that prevents access to the connector by a monitor probe;

(iii) Obstructed by equipment or piping that prevents access to the connector by a monitor probe;

(iv) Unable to be reached from a wheeled scissor-lift or hydraulic-type scaffold that would allow access to connectors up to 7.6 meters (25 feet) above the ground;

(v) Inaccessible because it would require elevating the monitoring personnel more than 2 meters (7 feet) above a permanent support surface or would require the erection of scaffolding; or

(vi) Not able to be accessed at any time in a safe manner to perform monitoring. Unsafe access includes, but is not limited to, the use of a wheeled scissor-lift on unstable or uneven terrain, the use of a motorized man-lift basket in areas where an ignition potential exists, or access would require near proximity to hazards such as electrical lines, or would risk damage to equipment.

(2) If any inaccessible, ceramic, or ceramic-lined connector is observed by visual, audible, olfactory, or other means to be leaking, the visual, audible, olfactory, or other indications of a leak to the atmosphere shall be eliminated as soon as practical.
(g) Except for instrumentation systems and inaccessible, ceramic, or ceramic-lined connectors meeting the provisions of paragraph (f) of this section, identify the connectors subject to the requirements of this subpart. Connectors need not be individually identified if all connectors in a designated area or length of pipe subject to the provisions of this subpart are identified as a group, and the number of connectors subject is indicated.

(b) You may elect to comply with the requirements of §§60.483-1a and 60.483-2a, as an alternative. The facility may elect to comply with these requirements as an alternative. Below are the requirements of Subpart VV as referenced above:

§60.483-1a Alternative standards for valves—allowable percentage of valves leaking.

(a) An owner or operator may elect to comply with an allowable percentage of valves leaking of equal to or less than 2.0 percent.

(b) The following requirements shall be met if an owner or operator wishes to comply with an allowable percentage of valves leaking:

(1) An owner or operator must notify the Administrator that the owner or operator has elected to comply with the allowable percentage of valves leaking before implementing this alternative standard, as specified in §60.487a(d).

(2) A performance test as specified in paragraph (c) of this section shall be conducted initially upon designation, annually, and at other times requested by the Administrator.

(3) If a valve leak is detected, it shall be repaired in accordance with §60.482-7a(d) and (e).

(c) Performance tests shall be conducted in the following manner:

(1) All valves in gas/vapor and light liquid service within the affected facility shall be monitored within 1 week by the methods specified in §60.485a(b).

(2) If an instrument reading of 500 ppm or greater is measured, a leak is detected.

(3) The leak percentage shall be determined by dividing the number of valves for which leaks are detected by the number of valves in gas/vapor and light liquid service within the affected facility.

(d) Owners and operators who elect to comply with this alternative standard shall not have an affected facility with a leak percentage greater than 2.0 percent, determined as described in §60.485a(h).

§60.483-2a Alternative standards for valves—skip period leak detection and repair.

(a)(1) An owner or operator may elect to comply with one of the alternative work practices specified in paragraphs (b)(2) and (3) of this section.

(2) An owner or operator must notify the Administrator before implementing one of the alternative work practices, as specified in §60.487(d)a.

(b)(1) An owner or operator shall comply initially with the requirements for valves in gas/vapor service and valves in light liquid service, as described in §60.482-7a.

(2) After 2 consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0, an owner or operator may begin to skip 1 of the quarterly leak detection periods for the valves in gas/vapor and light liquid service.

(3) After 5 consecutive quarterly leak detection periods with the percent of valves leaking equal to or less than 2.0, an owner or operator may begin to skip 3 of the quarterly leak detection periods for the valves in gas/vapor and light liquid service.

(4) If the percent of valves leaking is greater than 2.0, the owner or operator shall comply with the requirements as described in §60.482-7a but can again elect to use this section.

(5) The percent of valves leaking shall be determined as described in §60.485a(h).
(6) An owner or operator must keep a record of the percent of valves found leaking during each leak detection period.

(7) A valve that begins operation in gas/vapor service or light liquid service after the initial startup date for a process unit following one of the alternative standards in this section must be monitored in accordance with §60.482-7a(a)(2)(i) or (ii) before the provisions of this section can be applied to that valve.

(c) You may apply to the Administrator for permission to use an alternative means of emission limitation that achieves a reduction in emissions of VOC at least equivalent to that achieved by the controls required in this subpart according to the requirements of §60.5402 of this subpart.

(d) You must comply with the provisions of §60.485a of this part except as provided in paragraph (f) of this section.

The facility must comply with these requirements. Below are the requirements of Subpart VVa as referenced above:

§60.485a Test methods and procedures.

(a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b).

(b) The owner or operator shall determine compliance with the standards in §§60.482-1a through 60.482-11a, 60.483a, and 60.484a as follows:

(1) Method 21 shall be used to determine the presence of leaking sources. The instrument shall be calibrated before use each day of its use by the procedures specified in Method 21 of appendix A-7 of this part. The following calibration gases shall be used:

(i) Zero air (less than 10 ppm of hydrocarbon in air); and

(ii) A mixture of methane or n-hexane and air at a concentration no more than 2,000 ppm greater than the leak definition concentration of the equipment monitored. If the monitoring instrument's design allows for multiple calibration scales, then the lower scale shall be calibrated with a calibration gas that is no higher than 2,000 ppm above the concentration specified as a leak, and the highest scale shall be calibrated with a calibration gas that is approximately equal to 10,000 ppm. If only one scale on an instrument will be used during monitoring, the owner or operator need not calibrate the scales that will not be used during that day's monitoring.

(2) A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. Record the instrument reading for each scale used as specified in §60.486a(e)(7). Calculate the average algebraic difference between the three meter readings and the most recent calibration value. Divide this algebraic difference by the initial calibration value and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the initial calibration value, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/divided by 100) may be re-monitored.

(c) The owner or operator shall determine compliance with the no-detectable-emission standards in §§60.482-2a(e), 60.482-3a(i), 60.482-4a, 60.482-7a(f), and 60.482-10a(e) as follows:
(1) The requirements of paragraph (b) shall apply.

(2) Method 21 of appendix A-7 of this part shall be used to determine the background level. All potential leak interfaces shall be traversed as close to the interface as possible. The arithmetic difference between the maximum concentration indicated by the instrument and the background level is compared with 500 ppm for determining compliance.

(d) The owner or operator shall test each piece of equipment unless he demonstrates that a process unit is not in VOC service, i.e., that the VOC content would never be reasonably expected to exceed 10 percent by weight. For purposes of this demonstration, the following methods and procedures shall be used:

(1) Procedures that conform to the general methods in ASTM E260-73, 91, or 96, E168-67, 77, or 92, E169-63, 77, or 93 (incorporated by reference—see §60.17) shall be used to determine the percent VOC content in the process fluid that is contained in or contacts a piece of equipment.

(2) Organic compounds that are considered by the Administrator to have negligible photochemical reactivity may be excluded from the total quantity of organic compounds in determining the VOC content of the process fluid.

(3) Engineering judgment may be used to estimate the VOC content, if a piece of equipment had not been shown previously to be in service. If the Administrator disagrees with the judgment, paragraphs (d)(1) and (2) of this section shall be used to resolve the disagreement.

(e) The owner or operator shall demonstrate that a piece of equipment is in light liquid service by showing that all the following conditions apply:

(1) The vapor pressure of one or more of the organic components is greater than 0.3 kPa at 20 °C (1.2 in. H₂O at 68 °F). Standard reference texts or ASTM D2879-83, 96, or 97 (incorporated by reference—see §60.17) shall be used to determine the vapor pressures.

(2) The total concentration of the pure organic components having a vapor pressure greater than 0.3 kPa at 20 °C (1.2 in. H₂O at 68 °F) is equal to or greater than 20 percent by weight.

(3) The fluid is a liquid at operating conditions.

(f) Samples used in conjunction with paragraphs (d), (e), and (g) of this section shall be representative of the process fluid that is contained in or contacts the equipment or the gas being combusted in the flare.

(g) The owner or operator shall determine compliance with the standards of flares as follows:

(1) Method 22 of appendix A-7 of this part shall be used to determine visible emissions.

(2) A thermocouple or any other equivalent device shall be used to monitor the presence of a pilot flame in the flare.

(3) The maximum permitted velocity for air assisted flares shall be computed using the following equation:

\[V_{\text{max}} = K_f + K_r H_f \]

Where:

\[V_{\text{max}} = \text{Maximum permitted velocity, m/sec (ft/sec).} \]

\[H_f = \text{Net heating value of the gas being combusted, MJ/scm (Btu/scf).} \]

\[K_f = 8.706 \text{ m/sec (metric units)} = 28.56 \text{ ft/sec (English units).} \]

\[K_r = 0.7084 \text{ m/(MJ-sec) (metric units)} = 0.087 \text{ ft/(Btu-sec) (English units).} \]

(4) The net heating value (HT) of the gas being combusted in a flare shall be computed using the following equation:

\[H_T = K \sum_{i} C_i H_i \]
Where:

\[K = \text{Conversion constant, } 1.740 \times 10^4 \text{ (g-mole)/(MJ)/(ppm-scm-kcal) (metric units)} = 4.674 \times 10^4 \text{ [(g-mole)/(Btu)/(ppm-scft-kcal)] (English units).} \]

\[C_i = \text{Concentration of sample component \text{“i,” ppm}} \]

\[H_i = \text{Net heat of combustion of sample component \text{“i,“ at 25 °C and 760 mm Hg (77 °F and 14.7 psi), kcal/g-mole.}} \]

(5) Method 18 of appendix A-6 of this part or ASTM D6420-99 (2004) (where the target compound(s) are those listed in Section 1.1 of ASTM D6420-99, and the target concentration is between 150 parts per billion by volume and 100 ppmv) and ASTM D2504-67, 77, or 88 (Reapproved 1993) (incorporated by reference—see §60.17) shall be used to determine the concentration of sample component “i.”

(6) ASTM D2382-76 or 88 or D4809-95 (incorporated by reference—see §60.17) shall be used to determine the net heat of combustion of component “i” if published values are not available or cannot be calculated.

(7) Method 2, 2A, 2C, or 2D of appendix A-7 of this part, as appropriate, shall be used to determine the actual exit velocity of a flare. If needed, the unobstructed (free) cross-sectional area of the flare tip shall be used.

The facility does not currently have a flare and therefore 40 CFR 485(a)(g) is not applicable.

(h) The owner or operator shall determine compliance with §60.483-1a or §60.483-2a as follows:

(1) The percent of valves leaking shall be determined using the following equation:

\[\%V_i = (V_i / V_t) \times 100 \]

Where:

\[\%V_i = \text{Percent leaking valves.} \]

\[V_i = \text{Number of valves found leaking.} \]

\[V_t = \text{The sum of the total number of valves monitored.} \]

(2) The total number of valves monitored shall include difficult-to-monitor and unsafe-to-monitor valves only during the monitoring period in which those valves are monitored.

(3) The number of valves leaking shall include valves for which repair has been delayed.

(4) Any new valve that is not monitored within 30 days of being placed in service shall be included in the number of valves leaking and the total number of valves monitored for the monitoring period in which the valve is placed in service.

(5) If the process unit has been subdivided in accordance with §60.482-7a(c)(1)(ii), the sum of valves found leaking during a monitoring period includes all subgroups.

(6) The total number of valves monitored does not include a valve monitored to verify repair.

(e) You must comply with the provisions of §§60.486a and 60.487a of this part except as provided in §§60.5401, 60.5421, and 60.5422 of this part.

The facility must comply with these requirements. Below are the requirements of Subpart VVa as referenced above:

§60.486a Recordkeeping requirements.

(a)(1) Each owner or operator subject to the provisions of this subpart shall comply with the recordkeeping requirements of this section.
(2) An owner or operator of more than one affected facility subject to the provisions of this subpart may comply with the recordkeeping requirements for these facilities in one recordkeeping system if the system identifies each record by each facility.

(3) The owner or operator shall record the information specified in paragraphs (a)(3)(i) through (v) of this section for each monitoring event required by §§60.482-2a, 60.482-3a, 60.482-7a, 60.482-8a, 60.482-11a, and 60.483-2a.

(i) Monitoring instrument identification.

(ii) Operator identification.

(iii) Equipment identification.

(iv) Date of monitoring.

(v) Instrument reading.

(b) When each leak is detected as specified in §§60.482-2a, 60.482-3a, 60.482-7a, 60.482-8a, 60.482-11a, and 60.483-2a, the following requirements apply:

(1) A weatherproof and readily visible identification, marked with the equipment identification number, shall be attached to the leaking equipment.

(2) The identification on a valve may be removed after it has been monitored for 2 successive months as specified in §60.482-7a(c) and no leak has been detected during those 2 months.

(3) The identification on a connector may be removed after it has been monitored as specified in §60.482-11a(b)(3)(iv) and no leak has been detected during that monitoring.

(4) The identification on equipment, except on a valve or connector, may be removed after it has been repaired.

(c) When each leak is detected as specified in §§60.482-2a, 60.482-3a, 60.482-7a, 60.482-8a, 60.482-11a, and 60.483-2a, the following information shall be recorded in a log and shall be kept for 2 years in a readily accessible location:

(1) The instrument and operator identification numbers and the equipment identification number, except when indications of liquids dripping from a pump are designated as a leak.

(2) The date the leak was detected and the dates of each attempt to repair the leak.

(3) Repair methods applied in each attempt to repair the leak.

(4) Maximum instrument reading measured by Method 21 of appendix A-7 of this part at the time the leak is successfully repaired or determined to be nonreparable, except when a pump is repaired by eliminating indications of liquids dripping.

(5) “Repair delayed” and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.

(6) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.

(7) The expected date of successful repair of the leak if a leak is not repaired within 15 days.

(8) Dates of process unit shutdowns that occur while the equipment is unrepaired.

(9) The date of successful repair of the leak.

(d) The following information pertaining to the design requirements for closed vent systems and control devices described in §60.482-10a shall be recorded and kept in a readily accessible location:

(1) Detailed schematics, design specifications, and piping and instrumentation diagrams.

(2) The dates and descriptions of any changes in the design specifications.
(3) A description of the parameter or parameters monitored, as required in §60.482-10a(e), to ensure that control devices are operated and maintained in conformance with their design and an explanation of why that parameter (or parameters) was selected for the monitoring.

(4) Periods when the closed vent systems and control devices required in §§60.482-2a, 60.482-3a, 60.482-4a, and 60.482-5a are not operated as designed, including periods when a flare pilot light does not have a flame.

(5) Dates of startups and shutdowns of the closed vent systems and control devices required in §§60.482-2a, 60.482-3a, 60.482-4a, and 60.482-5a.

(e) The following information pertaining to all equipment subject to the requirements in §§60.482-1a to 60.482-11a shall be recorded in a log that is kept in a readily accessible location:

(1) A list of identification numbers for equipment subject to the requirements of this subpart.

(2)(i) A list of identification numbers for equipment that are designated for no detectable emissions under the provisions of §§60.482-2a(e), 60.482-3a(i), and 60.482-7a(f).

(ii) The designation of equipment as subject to the requirements of §60.482-2a(e), §60.482-3a(i), or §60.482-7a(f) shall be signed by the owner or operator. Alternatively, the owner or operator may establish a mechanism with their permitting authority that satisfies this requirement.

(3) A list of equipment identification numbers for pressure relief devices required to comply with §60.482-4a.

(4)(i) The dates of each compliance test as required in §§60.482-2a(e), 60.482-3a(i), 60.482-4a, and 60.482-7a(f).

(ii) The background level measured during each compliance test.

(iii) The maximum instrument reading measured at the equipment during each compliance test.

(5) A list of identification numbers for equipment in vacuum service.

(6) A list of identification numbers for equipment that the owner or operator designates as operating in VOC service less than 300 hr/yr in accordance with §60.482-1a(e), a description of the conditions under which the equipment is in VOC service, and rationale supporting the designation that it is in VOC service less than 300 hr/yr.

(7) The date and results of the weekly visual inspection for indications of liquids dripping from pumps in light liquid service.

(8) Records of the information specified in paragraphs (e)(8)(i) through (vi) of this section for monitoring instrument calibrations conducted according to sections 8.1.2 and 10 of Method 21 of appendix A-7 of this part and §60.485a(b).

(i) Date of calibration and initials of operator performing the calibration.

(ii) Calibration gas cylinder identification, certification date, and certified concentration.

(iii) Instrument scale(s) used.

(iv) A description of any corrective action taken if the meter readout could not be adjusted to correspond to the calibration gas value in accordance with section 10.1 of Method 21 of appendix A-7 of this part.

(v) Results of each calibration drift assessment required by §60.485a(b)(2) (i.e., instrument reading for calibration at end of monitoring day and the calculated percent difference from the initial calibration value).

(vi) If an owner or operator makes their own calibration gas, a description of the procedure used.

(9) The connector monitoring schedule for each process unit as specified in §60.482-11a(b)(3)(v).

(10) Records of each release from a pressure relief device subject to §60.482-4a.
The following information pertaining to all valves subject to the requirements of §60.482-7a(g) and (h), all pumps subject to the requirements of §60.482-2a(g), and all connectors subject to the requirements of §60.482-11a(e) shall be recorded in a log that is kept in a readily accessible location:

1. A list of identification numbers for valves, pumps, and connectors that are designated as unsafe-to-monitor, an explanation for each valve, pump, or connector stating why the valve, pump, or connector is unsafe-to-monitor, and the plan for monitoring each valve, pump, or connector.

2. A list of identification numbers for valves that are designated as difficult-to-monitor, an explanation for each valve stating why the valve is difficult-to-monitor, and the schedule for monitoring each valve.

The following information shall be recorded for valves complying with §60.483-2a:

1. A schedule of monitoring.

2. The percent of valves found leaking during each monitoring period.

Design criterion required in §§60.482-2a(d)(5) and 60.482-3a(e)(2) and explanation of the design criterion; and

Any changes to this criterion and the reasons for the changes.

The following information shall be recorded in a log that is kept in a readily accessible location for use in determining exemptions as provided in §60.480a(d):

1. An analysis demonstrating the design capacity of the affected facility.

2. A statement listing the feed or raw materials and products from the affected facilities and an analysis demonstrating whether these chemicals are heavy liquids or beverage alcohol, and

3. An analysis demonstrating that equipment is not in VOC service.

Information and data used to demonstrate that a piece of equipment is not in VOC service shall be recorded in a log that is kept in a readily accessible location.

The provisions of §60.7(b) and (d) do not apply to affected facilities subject to this subpart.

§60.487a Reporting requirements.

Each owner or operator subject to the provisions of this subpart shall submit semiannual reports to the Administrator beginning 6 months after the initial startup date.

The initial semiannual report to the Administrator shall include the following information:

1. Process unit identification.

2. Number of valves subject to the requirements of §60.482-7a, excluding those valves designated for no detectable emissions under the provisions of §60.482-7a(f).

3. Number of pumps subject to the requirements of §60.482-2a, excluding those pumps designated for no detectable emissions under the provisions of §60.482-2a(e) and those pumps complying with §60.482-2a(f).

4. Number of compressors subject to the requirements of §60.482-3a, excluding those compressors designated for no detectable emissions under the provisions of §60.482-3a(i) and those compressors complying with §60.482-3a(h).

5. Number of connectors subject to the requirements of §60.482-11a.

All semiannual reports to the Administrator shall include the following information, summarized from the information in §60.486a:

1. Process unit identification.

2. For each month during the semiannual reporting period,
(i) Number of valves for which leaks were detected as described in §60.482-7a(b) or §60.483-2a,
(ii) Number of valves for which leaks were not repaired as required in §60.482-7a(d)(1),
(iii) Number of pumps for which leaks were detected as described in §60.482-2a(b), (d)(4)(ii)(A) or (B),
or (d)(5)(iii).
(iv) Number of pumps for which leaks were not repaired as required in §60.482-2a(c)(1) and (d)(6),
(v) Number of compressors for which leaks were detected as described in §60.482-3a(f),
(vi) Number of compressors for which leaks were not repaired as required in §60.482-3a(g)(1),
(vii) Number of connectors for which leaks were detected as described in §60.482-11a(b)
(viii) Number of connectors for which leaks were not repaired as required in §60.482-11a(d), and
(ix)-(x) [Reserved]
(xi) The facts that explain each delay of repair and, where appropriate, why a process unit shutdown was
technically infeasible.

(3) Dates of process unit shutdowns which occurred within the semiannual reporting period.

(4) Revisions to items reported according to paragraph (b) of this section if changes have occurred since
the initial report or subsequent revisions to the initial report.

(d) An owner or operator electing to comply with the provisions of §§60.483-1a or 60.483-2a shall notify
the Administrator of the alternative standard selected 90 days before implementing either of the
provisions.

(e) An owner or operator shall report the results of all performance tests in accordance with §60.8 of the
General Provisions. The provisions of §60.8(d) do not apply to affected facilities subject to the provisions
of this subpart except that an owner or operator must notify the Administrator of the schedule for the
initial performance tests at least 30 days before the initial performance tests.

(f) The requirements of paragraphs (a) through (c) of this section remain in force until and unless EPA, in
delегating enforcement authority to a state under section 111(c) of the CAA, approves reporting
requirements or an alternative means of compliance surveillance adopted by such state. In that event,
affected sources within the state will be relieved of the obligation to comply with the requirements of
paragraphs (a) through (c) of this section, provided that they comply with the requirements established by
the state.

(f) You must use the following provision instead of §60.485a(d)(1): Each piece of equipment is presumed to be in
VOC service or in wet gas service unless an owner or operator demonstrates that the piece of equipment is not in
VOC service or in wet gas service. For a piece of equipment to be considered not in VOC service, it must be
determined that the VOC content can be reasonably expected never to exceed 10.0 percent by weight. For a piece
of equipment to be considered in wet gas service, it must be determined that it contains or contacts the field gas
before the extraction step in the process. For purposes of determining the percent VOC content of the process
fluid that is contained in or contacts a piece of equipment, procedures that conform to the methods described in
ASTM E169-93, E168-92, or E260-96 (incorporated by reference as specified in §60.17) must be used.

The facility must comply with this requirement.

§60.5401 What are the exceptions to the equipment leak standards for affected facilities at onshore
natural gas processing plants?

(a) You may comply with the following exceptions to the provisions of §60.5400(a) and (b).

(b)(1) Each pressure relief device in gas/vapor service may be monitored quarterly and within 5 days after each
pressure release to detect leaks by the methods specified in §60.485a(b) except as provided in §60.5400(c) and in
paragraph (b)(4) of this section, and §60.482-4a(a) through (c) of subpart V Va.

(2) If an instrument reading of 500 ppm or greater is measured, a leak is detected.
(3)(i) When a leak is detected, it must be repaired as soon as practicable, but no later than 15 calendar days after it is detected, except as provided in §60.482-9a.

(ii) A first attempt at repair must be made no later than 5 calendar days after each leak is detected.

(4)(i) Any pressure relief device that is located in a nonfractionating plant that is monitored only by non-plant personnel may be monitored after a pressure release the next time the monitoring personnel are on-site, instead of within 5 days as specified in paragraph (b)(1) of this section and §60.482-4a(b)(1) of subpart VVa.

(ii) No pressure relief device described in paragraph (b)(4)(i) of this section must be allowed to operate for more than 30 days after a pressure release without monitoring.

(c) Sampling connection systems are exempt from the requirements of §60.482-5a.

(d) Pumps in light liquid service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service that are located at a nonfractionating plant that does not have the design capacity to process 283,200 standard cubic meters per day (scmd) (10 million standard cubic feet per day) or more of field gas are exempt from the routine monitoring requirements of §§60.482-2a(a)(1) and 60.482-7a(a), and paragraph (b)(1) of this section.

(e) Pumps in light liquid service, valves in gas/vapor and light liquid service, and pressure relief devices in gas/vapor service within a process unit that is located in the Alaskan North Slope are exempt from the routine monitoring requirements of §§60.482-2a(a)(1), 60.482-7a(a), and paragraph (b)(1) of this section.

(f) An owner or operator may use the following provisions instead of §60.485a(e):

(1) Equipment is in heavy liquid service if the weight percent evaporated is 10 percent or less at 150 °C (302 °F) as determined by ASTM Method D86-96 (incorporated by reference as specified in §60.17).

(2) Equipment is in light liquid service if the weight percent evaporated is greater than 10 percent at 150 °C (302 °F) as determined by ASTM Method D86-96 (incorporated by reference as specified in §60.17).

(g) An owner or operator may use the following provisions instead of §60.485a(b)(2): A calibration drift assessment shall be performed, at a minimum, at the end of each monitoring day. Check the instrument using the same calibration gas(es) that were used to calibrate the instrument before use. Follow the procedures specified in Method 21 of appendix A-7 of this part, Section 10.1, except do not adjust the meter readout to correspond to the calibration gas value. Record the instrument reading for each scale used as specified in §60.486a(e)(8). Divide these readings by the initial calibration values for each scale and multiply by 100 to express the calibration drift as a percentage. If any calibration drift assessment shows a negative drift of more than 10 percent from the initial calibration value, then all equipment monitored since the last calibration with instrument readings below the appropriate leak definition and above the leak definition multiplied by (100 minus the percent of negative drift/ divided by 100) must be re-monitored. If any calibration drift assessment shows a positive drift of more than 10 percent from the initial calibration value, then, at the owner/operator's discretion, all equipment since the last calibration with instrument readings above the appropriate leak definition and below the leak definition multiplied by (100 plus the percent of positive drift/ divided by 100) may be re-monitored.

The facility may comply with these exceptions to the above listed provisions.

§60.5402 What are the alternative emission limitations for equipment leaks from onshore natural gas processing plants?

(a) If, in the Administrator's judgment, an alternative means of emission limitation will achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under any design, equipment, work practice or operational standard, the Administrator will publish, in the FEDERAL REGISTER, a notice permitting the use of that alternative means for the purpose of compliance with that standard. The notice may condition permission on requirements related to the operation and maintenance of the alternative means.

(b) Any notice under paragraph (a) of this section must be published only after notice and an opportunity for a public hearing.
(c) The Administrator will consider applications under this section from either owners or operators of affected facilities, or manufacturers of control equipment.

(d) The Administrator will treat applications under this section according to the following criteria, except in cases where the Administrator concludes that other criteria are appropriate:

(1) The applicant must collect, verify and submit test data, covering a period of at least 12 months, necessary to support the finding in paragraph (a) of this section.

(2) If the applicant is an owner or operator of an affected facility, the applicant must commit in writing to operate and maintain the alternative means so as to achieve a reduction in VOC emissions at least equivalent to the reduction in VOC emissions achieved under the design, equipment, work practice or operational standard.

The facility may comply with these alternative emission limitations.

§60.5405 What standards apply to sweetening units at onshore natural gas processing plants?

The facility does not have a sweetening unit and therefore these requirements are not applicable.

§60.5406 What test methods and procedures must I use for my sweetening units affected facilities at onshore natural gas processing plants?

The facility does not have a sweetening unit and therefore these requirements are not applicable.

§60.5407 What are the requirements for monitoring of emissions and operations from my sweetening unit affected facilities at onshore natural gas processing plants?

The facility does not have a sweetening unit and therefore these requirements are not applicable.

§60.5408 What is an optional procedure for measuring hydrogen sulfide in acid gas—Tutwiler Procedure?

The facility does not have a sweetening unit and therefore these requirements are not applicable.

§60.5410 How do I demonstrate initial compliance with the standards for my gas well affected facility, my centrifugal compressor affected facility, my reciprocating compressor affected facility, my pneumatic controller affected facility, my storage vessel affected facility, and my equipment leaks and sweetening unit affected facilities at onshore natural gas processing plants?

You must determine initial compliance with the standards for each affected facility using the requirements in paragraphs (a) through (i) of this section. The initial compliance period begins on October 15, 2012, or upon initial startup, whichever is later, and ends no later than one year after the initial startup date for your affected facility or no later than one year after October 15, 2012. The initial compliance period may be less than one full year.

(a) To achieve initial compliance with the standards for each well completion operation conducted at your gas well affected facility you must comply with paragraphs (a)(1) through (a)(4) of this section.

(1) You must submit the notification required in §60.5420(a)(2).

(2) You must submit the initial annual report for your well affected facility as required in §60.5420(b).

(3) You must maintain a log of records as specified in §60.5420(c)(1)(i) through (iv) for each well completion operation conducted during the initial compliance period.

(4) For each gas well affected facility subject to both §60.5375(a)(1) and (3), as an alternative to retaining the records specified in §60.5420(c)(1)(i) through (iv), you may maintain records of one or more digital photographs with the date the photograph was taken and the latitude and longitude of the well site imbedded within or stored with the digital file showing the equipment for storing or re-injecting recovered liquid, equipment for routing recovered gas to the gas flow line and the completion combustion device (if applicable) connected to and operating at each gas well completion operation that occurred during the initial compliance period. As an alternative to imbedded latitude and longitude within the digital photograph, the digital photograph may consist of a photograph of the equipment connected and operating at each well completion operation with a photograph...
of a separately operating GIS device within the same digital picture, provided the latitude and longitude output of the GIS unit can be clearly read in the digital photograph.

(b)(1) To achieve initial compliance with standards for your centrifugal compressor affected facility you must reduce VOC emissions from each centrifugal compressor wet seal fluid degassing system by 95.0 percent or greater as required by §60.5380 and as demonstrated by the requirements of §60.5413.

(2) If you use a control device to reduce emissions, you must equip the wet seal fluid degassing system with a cover that meets the requirements of §60.5411(b) that is connected through a closed vent system that meets the requirements of §60.5411(a) and is routed to a control device that meets the conditions specified in §60.5412(a), (b) and (c). As an alternative to routing the closed vent system to a control device, you may route the closed vent system to a process.

(3) You must conduct an initial performance test as required in §60.5413 within 180 days after initial startup or by October 15, 2012, whichever is later, and you must comply with the continuous compliance requirements in §60.5415(b)(1) through (3).

(4) You must conduct the initial inspections required in §60.5416(a) and (b).

(5) You must install and operate the continuous parameter monitoring systems in accordance with §60.5417(a) through (g), as applicable.

(6) You must submit the notifications required in 60.7(a)(1), (3), and (4).

(7) You must submit the initial annual report for your centrifugal compressor affected facility as required in §60.5420(b)(3) for each centrifugal compressor affected facility.

(8) You must maintain the records as specified in §60.5420(c)(2).

(c) To achieve initial compliance with the standards for each reciprocating compressor affected facility you must comply with paragraphs (c)(1) through (4) of this section.

(1) During the initial compliance period, you must continuously monitor the number of hours of operation or track the number of months since the last rod packing replacement.

(2) [Reserved]

(3) You must submit the initial annual report for your reciprocating compressor as required in §60.5420(b).

(4) You must maintain the records as specified in §60.5420(c)(3) for each reciprocating compressor affected facility.

(d) To achieve initial compliance with emission standards for your pneumatic controller affected facility you must comply with the requirements specified in paragraphs (d)(1) through (6) of this section, as applicable.

(1) You must demonstrate initial compliance by maintaining records as specified in §60.5420(c)(4)(ii) of your determination that the use of a pneumatic controller affected facility with a bleed rate greater than 6 standard cubic feet of gas per hour is required as specified in §60.5390(a).

(2) You own or operate a pneumatic controller affected facility located at a natural gas processing plant and your pneumatic controller is driven by a gas other than natural gas and therefore emits zero natural gas.

(3) You own or operate a pneumatic controller affected facility located between the wellhead and a natural gas processing plant and the manufacturer's design specifications indicate that the controller emits less than or equal to 6 standard cubic feet of gas per hour.

(4) You must tag each new pneumatic controller affected facility according to the requirements of §60.5390(b)(2) or (c)(2).

(5) You must include the information in paragraph (d)(1) of this section and a listing of the pneumatic controller affected facilities specified in paragraphs (d)(2) and (3) of this section in the initial annual report submitted for your pneumatic controller affected facilities constructed, modified or reconstructed during the period covered by the annual report according to the requirements of §60.5420(b).
(6) You must maintain the records as specified in §60.5420(c)(4) for each pneumatic controller affected facility.

(e) [Reserved]

(f) For affected facilities at onshore natural gas processing plants, initial compliance with the VOC requirements is demonstrated if you are in compliance with the requirements of §60.5400.

(g) For sweetening unit affected facilities at onshore natural gas processing plants, initial compliance is demonstrated according to paragraphs (g)(1) through (3) of this section.

(1) To determine compliance with the standards for SO, specified in §60.5405(a), during the initial performance test as required by §60.8, the minimum required sulfur dioxide emission reduction efficiency (Z) is compared to the emission reduction efficiency (R) achieved by the sulfur recovery technology as specified in paragraphs (g)(1)(i) and (ii) of this section.

(i) If R ≥ Z, your affected facility is in compliance.

(ii) If R < Z, your affected facility is not in compliance.

(2) The emission reduction efficiency (R) achieved by the sulfur reduction technology must be determined using the procedures in §60.5406(c)(1).

(3) You have submitted the results of paragraphs (g)(1) and (2) of this section in the initial annual report submitted for your sweetening unit affected facilities at onshore natural gas processing plants.

(h) For each storage vessel affected facility, you must comply with paragraphs (h)(1) through (5) of this section. For a Group 1 storage vessel affected facility, you must demonstrate initial compliance by April 15, 2015, except as otherwise provided in paragraph (i) of this section. For a Group 2 storage vessel affected facility, you must demonstrate initial compliance by April 15, 2014, or within 60 days after startup, whichever is later.

(1) You must determine the potential VOC emission rate as specified in §60.5365(e).

(2) You must reduce VOC emissions in accordance with §60.5395(d).

(3) If you use a control device to reduce emissions, or if you route emissions to a process, you must demonstrate initial compliance by meeting the requirements in §60.5395(e).

(4) You must submit the information required for your storage vessel affected facility as specified in §60.5420(b).

(5) You must maintain the records required for your storage vessel affected facility, as specified in §60.5420(c)(5) through (8) and §60.5420(c)(12) and (13) for each storage vessel affected facility.

(i) For each Group 1 storage vessel affected facility, you must submit the notification specified in §60.5395(b)(2) with the initial annual report specified in §60.5420(b)(6).

The facility is affected and must comply with two categories under the rule, pneumatic controller affected facilities and equipment leaks.

§60.5411 What additional requirements must I meet to determine initial compliance for my covers and closed vent systems routing materials from storage vessels and centrifugal compressor wet seal degassing systems?

Emissions from storage vessel affected facilities will satisfy any potentially applicable requirements.

§60.5412 What additional requirements must I meet for determining initial compliance with control devices used to comply with the emission standards for my storage vessel or centrifugal compressor affected facility?

Emissions from storage vessel affected facilities will satisfy any potentially applicable requirements.

§60.5413 What are the performance testing procedures for control devices used to demonstrate compliance at my storage vessel or centrifugal compressor affected facility?

Emissions from storage vessel affected facilities will satisfy any potentially applicable requirements.
§60.5415 How do I demonstrate continuous compliance with the standards for my gas well affected facility, my centrifugal compressor affected facility, my stationary reciprocating compressor affected facility, my pneumatic controller affected facility, my storage vessel affected facility, and my affected facilities at onshore natural gas processing plants?

(a) For each gas well affected facility, you must demonstrate continuous compliance by submitting the reports required by §60.5420(b) and maintaining the records for each completion operation specified in §60.5420(c)(1).

(b) For each centrifugal compressor affected facility, you must demonstrate continuous compliance according to paragraphs (b)(1) through (3) of this section.

(1) You must reduce VOC emissions from the wet seal fluid degassing system by 95.9 percent or greater.

(2) For each control device used to reduce emissions, you must demonstrate continuous compliance with the performance requirements of §60.5412(a) using the procedures specified in paragraphs (b)(2)(i) through (vii) of this section. If you use a condenser as the control device to achieve the requirements specified in §60.5412(a)(2), you must demonstrate compliance according to paragraph (b)(2)(viii) of this section. You may switch between compliance with paragraphs (b)(2)(i) through (vii) of this section and compliance with paragraph (b)(2)(viii) of this section only after at least 1 year of operation in compliance with the selected approach. You must provide notification of such a change in the compliance method in the next annual report, as required in §60.5420(b), following the change.

(i) You must operate below (or above) the site specific maximum (or minimum) parameter value established according to the requirements of §60.5417(f)(1).

(ii) You must calculate the daily average of the applicable monitored parameter in accordance with §60.5417(e) except that the inlet gas flow rate to the control device must not be averaged.

(iii) Compliance with the operating parameter limit is achieved when the daily average of the monitoring parameter value calculated under paragraph (b)(2)(ii) of this section is either equal to or greater than the minimum monitoring value or equal to or less than the maximum monitoring value established under paragraph (b)(2)(i) of this section. When performance testing of a combustion control device is conducted by the device manufacturer as specified in §60.5413(d), compliance with the operating parameter limit is achieved when the criteria in §60.5413(e) are met.

(iv) You must operate the continuous monitoring system required in §60.5417 at all times the affected source is operating, except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits and required zero and span adjustments). A monitoring system malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring system to provide valid data. Monitoring system failures that are caused in part by poor maintenance or careless operation are not malfunctions. You are required to complete monitoring system repairs in response to monitoring system malfunctions and to return the monitoring system to operation as expeditiously as practicable.

(v) You may not use data recorded during monitoring system malfunctions, repairs associated with monitoring system malfunctions, or required monitoring system quality assurance or control activities in calculations used to report emissions or operating levels. You must use all the data collected during all other required data collection periods to assess the operation of the control device and associated control system.

(vi) Failure to collect required data is a deviation of the monitoring requirements, except for periods of monitoring system malfunctions, repairs associated with monitoring system malfunctions, and required monitoring system quality assurance or quality control activities (including, as applicable, system accuracy audits and required zero and span adjustments).

(vii) If you use a combustion control device to meet the requirements of §60.5412(a) and you demonstrate compliance using the test procedures specified in §60.5413(b), you must comply with paragraphs (b)(2)(vii)(A) through (D) of this section.

(A) A pilot flame must be present at all times of operation.
(B) Devices must be operated with no visible emissions, except for periods not to exceed a total of 2 minutes during any hour. A visible emissions test using section 11. of Method 22, 40 CFR part 60, appendix A, must be performed each calendar quarter. The observation period must be 1 hour and must be conducted according to section 11. of EPA Method 22, 40 CFR part 60, appendix A.

(C) Devices failing the visible emissions test must follow manufacturer’s repair instructions, if available, or best combustion engineering practice as outlined in the unit inspection and maintenance plan, to return the unit to compliant operation. All repairs and maintenance activities for each unit must be recorded in a maintenance and repair log and must be available for inspection.

(D) Following return to operation from maintenance or repair activity, each device must pass a Method 22, 40 CFR part 60, appendix A, visual observation as described in paragraph (b)(2)(vii)(b) of this section.

(viii) If you use a condenser as the control device to achieve the percent reduction performance requirements specified in §60.5412(a)(2), you must demonstrate compliance using the procedures in paragraphs (b)(2)(viii)(A) through (E) of this section.

(A) You must establish a site-specific condenser performance curve according to §60.5417(f)(2).

(B) You must calculate the daily average condenser outlet temperature in accordance with §60.5417(e).

(C) You must determine the condenser efficiency for the current operating day using the daily average condenser outlet temperature calculated under paragraph (b)(2)(viii)(B) of this section and the condenser performance curve established under paragraph (b)(2)(viii)(A) of this section.

(D) Except as provided in paragraphs (b)(2)(viii)(D)(1) and (2) of this section, at the end of each operating day, you must calculate the 365-day rolling average TOC emission reduction, as appropriate, from the condenser efficiencies as determined in paragraph (b)(2)(viii)(C) of this section.

(1) After the compliance dates specified in §60.5370, if you have less than 120 days of data for determining average TOC emission reduction, you must calculate the average TOC emission reduction for the first 120 days of operation after the compliance dates. You have demonstrated compliance with the overall 95.0 percent reduction requirement if the 120-day average TOC emission reduction is equal to or greater than 95.0 percent.

(2) After 120 days and no more than 364 days of operation after the compliance date specified in §60.5370, you must calculate the average TOC emission reduction as the TOC emission reduction averaged over the number of days between the current day and the applicable compliance date. You have demonstrated compliance with the overall 95.0 percent reduction requirement, if the average TOC emission reduction is equal to or greater than 95.0 percent.

(E) If you have data for 365 days or more of operation, you have demonstrated compliance with the TOC emission reduction if the rolling 365-day average TOC emission reduction calculated in paragraph (b)(2)(viii)(D) of this section is equal to or greater than 95.0 percent.

(3) You must submit the annual report required by 60.5420(b) and maintain the records as specified in §60.5420(c)(2).

(c) For each reciprocating compressor affected facility, you must demonstrate continuous compliance according to paragraphs (c)(1) through (3) of this section.

(1) You must continuously monitor the number of hours of operation for each reciprocating compressor affected facility or track the number of months since initial startup, or October 15, 2012, or the date of the most recent reciprocating compressor rod packing replacement, whichever is later.

(2) You must submit the annual report as required in §60.5420(b) and maintain records as required in §60.5420(c)(3).

(3) You must replace the reciprocating compressor rod packing before the total number of hours of operation reaches 26,000 hours or the number of months since the most recent rod packing replacement reaches 36 months.

(d) For each pneumatic controller affected facility, you must demonstrate continuous compliance according to paragraphs (d)(1) through (3) of this section.
(1) You must continuously operate the pneumatic controllers as required in §60.5390(a), (b), or (c).

(2) You must submit the annual report as required in §60.5420(b).

(3) You must maintain records as required in §60.5420(c)(4).

(e) You must demonstrate continuous compliance according to paragraph (e)(3) of this section for each storage vessel affected facility, for which you are using a control device or routing emissions to a process to meet the requirement of §60.5395(d)(1).

(1) [Reserved]

(2) [Reserved]

(3) For each storage vessel affected facility, you must comply with paragraphs (e)(3)(i) and (ii) of this section.

(i) You must reduce VOC emissions as specified in §60.5395(d).

(ii) For each control device installed to meet the requirements of §60.5395(d), you must demonstrate continuous compliance with the performance requirements of §60.5412(d) for each storage vessel affected facility using the procedure specified in paragraph (e)(3)(ii)(A) and either (e)(3)(ii)(B) or (e)(3)(ii)(C) of this section.

(A) You must comply with §60.5416(c) for each cover and closed vent system.

(B) You must comply with §60.5417(h) for each control device.

(C) Each closed vent system that routes emissions to a process must be operated as specified in §60.5411(c)(2).

(f) For affected facilities at onshore natural gas processing plants, continuous compliance with VOC requirements is demonstrated if you are in compliance with the requirements of §60.5400.

(g) For each sweetening unit affected facility at onshore natural gas processing plants, you must demonstrate continuous compliance with the standards for SO, specified in §60.5405(b) according to paragraphs (g)(1) and (2) of this section.

(1) The minimum required SO, emission reduction efficiency (Z,) is compared to the emission reduction efficiency (R) achieved by the sulfur recovery technology.

(i) If R < Z,, your affected facility is in compliance.

(ii) If R ≥ Z,, your affected facility is not in compliance.

(2) The emission reduction efficiency (R) achieved by the sulfur reduction technology must be determined using the procedures in §60.5406(c)(1).

(h) Affirmative defense for violations of emission standards during malfunction. In response to an action to enforce the standards set forth in §§60.5375, 60.5380, 60.5385, 60.5390, 60.5395, 60.5400, and 60.5405, you may assert an affirmative defense to a claim for civil penalties for violations of such standards that are caused by malfunction, as defined at §60.2. Appropriate penalties may be assessed, however, if you fail to meet your burden of proving all of the requirements in the affirmative defense. The affirmative defense shall not be available for claims for injunctive relief.

(1) To establish the affirmative defense in any action to enforce such a standard, you must timely meet the reporting requirements in §60.5415(h)(2), and must prove by a preponderance of evidence that:

(i) The violation:

(A) Was caused by a sudden, infrequent, and unavoidable failure of air pollution control equipment, process equipment, or a process to operate in a normal or usual manner; and

(B) Could not have been prevented through careful planning, proper design or better operation and maintenance practices; and

(C) Did not stem from any activity or event that could have been foreseen and avoided, or planned for; and

(D) Was not part of a recurring pattern indicative of inadequate design, operation, or maintenance; and
(ii) Repairs were made as expeditiously as possible when a violation occurred. Off-shift and overtime labor were used, to the extent practicable to make these repairs; and

(iii) The frequency, amount and duration of the violation (including any bypass) were minimized to the maximum extent practicable; and

(iv) If the violation resulted from a bypass of control equipment or a process, then the bypass was unavoidable to prevent loss of life, personal injury, or severe property damage; and

(v) All possible steps were taken to minimize the impact of the violation on ambient air quality, the environment and human health; and

(vi) All emissions monitoring and control systems were kept in operation if at all possible, consistent with safety and good air pollution control practices; and

(vii) All of the actions in response to the violation were documented by properly signed, contemporaneous operating logs; and

(viii) At all times, the affected source was operated in a manner consistent with good practices for minimizing emissions; and

(ix) A written root cause analysis has been prepared, the purpose of which is to determine, correct, and eliminate the primary causes of the malfunction and the violation resulting from the malfunction event at issue. The analysis shall also specify, using best monitoring methods and engineering judgment, the amount of any emissions that were the result of the malfunction.

(2) Report. The owner or operator seeking to assert an affirmative defense shall submit a written report to the Administrator with all necessary supporting documentation, that it has met the requirements set forth in paragraph (h)(1) of this section. This affirmative defense report shall be included in the first periodic compliance, deviation report or excess emission report otherwise required after the initial occurrence of the violation of the relevant standard (which may be the end of any applicable averaging period). If such compliance, deviation report or excess emission report is due less than 45 days after the initial occurrence of the violation, the affirmative defense report may be included in the second compliance, deviation report or excess emission report due after the initial occurrence of the violation of the relevant standard.

The facility is affected and must comply with two categories under the rule, pneumatic controller affected facilities and equipment leaks.

§60.5416 What are the initial and continuous cover and closed vent system inspection and monitoring requirements for my storage vessel and centrifugal compressor affected facility?

Emissions from storage vessel affected facilities will satisfy any potentially applicable requirements.

§60.5417 What are the continuous control device monitoring requirements for my storage vessel or centrifugal compressor affected facility?

Emissions from storage vessel affected facilities will satisfy any potentially applicable requirements.

§60.5420 What are my notification, reporting, and recordkeeping requirements?

(a) You must submit the notifications according to paragraphs (a)(1) and (2) of this section if you own or operate one or more of the affected facilities specified in §60.3365 that was constructed, modified, or reconstructed during the reporting period.

(1) If you own or operate a gas well, pneumatic controller, centrifugal compressor, reciprocating compressor or storage vessel affected facility you are not required to submit the notifications required in §60.7(a)(1), (3), and (4).
(2)(i) If you own or operate a gas well affected facility, you must submit a notification to the Administrator no later than 2 days prior to the commencement of each well completion operation listing the anticipated date of the well completion operation. The notification shall include contact information for the owner or operator; the API well number, the latitude and longitude coordinates for each well in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983; and the planned date of the beginning of flowback. You may submit the notification in writing or in electronic format.

(ii) If you are subject to state regulations that require advance notification of well completions and you have met those notification requirements, then you are considered to have met the advance notification requirements of paragraph (a)(2)(i) of this section.

(b) Reporting requirements. You must submit annual reports containing the information specified in paragraphs (b)(1) through (6) of this section to the Administrator and performance test reports as specified in paragraph (b)(7) or (8) of this section. The initial annual report is due no later than 90 days after the end of the initial compliance period as determined according to §60.5410. Subsequent annual reports are due no later than same date each year as the initial annual report. If you own or operate more than one affected facility, you may submit one report for multiple affected facilities provided the report contains all of the information required as specified in paragraphs (b)(1) through (6) of this section. Annual reports may coincide with title V reports as long as all the required elements of the annual report are included. You may arrange with the Administrator a common schedule on which reports required by this part may be submitted as long as the schedule does not extend the reporting period.

(1) The general information specified in paragraphs (b)(1)(i) through (iv) of this section.

(i) The company name and address of the affected facility.

(ii) An identification of each affected facility being included in the annual report.

(iii) Beginning and ending dates of the reporting period.

(iv) A certification by a responsible official of truth, accuracy, and completeness. This certification shall state that, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

(2) For each gas well affected facility, the information in paragraphs (b)(2)(i) through (ii) of this section.

(i) Records of each well completion operation as specified in paragraph (c)(1)(i) through (iv) of this section for each gas well affected facility conducted during the reporting period. In lieu of submitting the records specified in paragraph (c)(1)(i) through (iv), the owner or operator may submit a list of the well completions with hydraulic fracturing completed during the reporting period and the records required by paragraph (c)(1)(v) of this section for each well completion.

(ii) Records of deviations specified in paragraph (c)(1)(ii) of this section that occurred during the reporting period.

(3) For each centrifugal compressor affected facility, the information specified in paragraphs (b)(3)(i) and (ii) of this section.

(i) An identification of each centrifugal compressor using a wet seal system constructed, modified or reconstructed during the reporting period.

(ii) Records of deviations specified in paragraph (c)(2) of this section that occurred during the reporting period.

(iii) If required to comply with §60.5380(a)(1), the records specified in paragraphs (c)(6) through (11) of this section.

(4) For each reciprocating compressor affected facility, the information specified in paragraphs (b)(4)(i) through (ii) of this section.

(i) The cumulative number of hours of operation or the number of months since initial startup, since October 15, 2012, or since the previous reciprocating compressor rod packing replacement, whichever is later.
(ii) Records of deviations specified in paragraph (c)(3)(iii) of this section that occurred during the reporting period.

(5) For each pneumatic controller affected facility, the information specified in paragraphs (b)(5)(i) through (iii) of this section.

(i) An identification of each pneumatic controller constructed, modified or reconstructed during the reporting period, including the identification information specified in §60.5390(b)(2) or (c)(2).

(ii) If applicable, documentation that the use of pneumatic controller affected facilities with a natural gas bleed rate greater than 6 standard cubic feet per hour are required and the reasons why.

(iii) Records of deviations specified in paragraph (c)(4)(v) of this section that occurred during the reporting period.

(6) For each storage vessel affected facility, the information in paragraphs (b)(6)(i) through (vii) of this section.

(i) An identification, including the location, of each storage vessel affected facility for which construction, modification or reconstruction commenced during the reporting period. The location of the storage vessel shall be in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.

(ii) Documentation of the VOC emission rate determination according to §60.5365(e).

(iii) Records of deviations specified in paragraph (c)(5)(iii) of this section that occurred during the reporting period.

(iv) You must submit a notification identifying each Group 1 storage vessel affected facility in your initial annual report. You must include the location of the storage vessel, in latitude and longitude coordinates in decimal degrees to an accuracy and precision of five (5) decimals of a degree using the North American Datum of 1983.

(v) A statement that you have met the requirements specified in §60.5410(h)(2) and (3).

(vi) You must identify each storage vessel affected facility that is removed from service during the reporting period as specified in §60.5395(f)(1).

(vii) You must identify each storage vessel affected facility for which operation resumes during the reporting period as specified in §60.5395(f)(2)(iii).

(7)(i) Within 60 days after the date of completing each performance test (see §60.8 of this part) as required by this subpart, except testing conducted by the manufacturer as specified in §60.5413(d), you must submit the results of the performance tests required by this subpart to the EPA as follows. You must use the latest version of the EPA's Electronic Reporting Tool (ERT) (see http://www.epa.gov/tn/chief/ert/index.html) existing at the time of the performance test to generate a submission package file, which documents the performance test. You must then submit the file generated by the ERT through the EPA's Compliance and Emissions Data Reporting Interface (CEDRI), which can be accessed by logging in to the EPA's Central Data Exchange (CDX) (https://cdx.epa.gov). Only data collected using test methods supported by the ERT as listed on the ERT Web site are subject to this requirement for submitting reports electronically. Owners or operators who claim that some of the information being submitted for performance tests is confidential business information (CBI) must submit a complete ERT file including information claimed to be CBI on a compact disk or other commonly used electronic storage media (including, but not limited to, flash drives) to EPA. The electronic media must be clearly marked as CBI and mailed to U.S. EPA/OAPQS/CORE CBI Office, Attention: WebFIRE Administrator, MD C404-02, 4930 Old Page Rd., Durham, NC 27703. The same ERT file with the CBI omitted must be submitted to EPA via CDX as described earlier in this paragraph. At the discretion of the delegated authority, you must also submit these reports, including the confidential business information, to the delegated authority in the format specified by the delegated authority. For any performance test conducted using test methods that are not listed on the ERT Web site, the owner or operator shall submit the results of the performance test to the Administrator at the appropriate address listed in §60.4.
(ii) All reports, except as specified in paragraph (b)(8) of this section, required by this subpart not subject to the requirements in paragraph (a)(2)(i) of this section must be sent to the Administrator at the appropriate address listed in §60.4 of this part. The Administrator or the delegated authority may request a report in any form suitable for the specific case (e.g., by commonly used electronic media such as Excel spreadsheet, on CD or hard copy).

(8) For enclosed combustors tested by the manufacturer in accordance with §60.5413(d), an electronic copy of the performance test results required by §60.5413(d) shall be submitted via email to Oil_and_Gas_PT@EPA.GOV unless the test results for that model of combustion control device are posted at the following Web site: epa.gov/airquality/oilandgas/.

(c) Recordkeeping requirements. You must maintain the records identified as specified in §60.7(f) and in paragraphs (c)(1) through (13) of this section. All records required by this subpart must be maintained either onsite or at the nearest local field office for at least 5 years.

(1) The records for each gas well affected facility as specified in paragraphs (c)(1)(i) through (v) of this section.

(i) Records identifying each well completion operation for each gas well affected facility;

(ii) Records of deviations in cases where well completion operations with hydraulic fracturing were not performed in compliance with the requirements specified in §60.5375.

(iii) Records required in §60.5375(b) or (f) for each well completion operation conducted for each gas well affected facility that occurred during the reporting period. You must maintain the records specified in paragraphs (c)(1)(iii)(A) and (B) of this section.

(A) For each gas well affected facility required to comply with the requirements of §60.5375(a), you must record: The location of the well; the API well number; the duration of flowback; duration of recovery to the flow line; duration of combustion; duration of venting; and specific reasons for venting in lieu of capture or combustion. The duration must be specified in hours of time.

(B) For each gas well affected facility required to comply with the requirements of §60.5375(f), you must maintain the records specified in paragraph (c)(1)(iii)(A) of this section except that you do not have to record the duration of recovery to the flow line.

(iv) For each gas well facility for which you claim an exception under §60.5375(a)(3), you must record: The location of the well; the API well number; the specific exception claimed; the starting date and ending date for the period the well operated under the exception; and an explanation of why the well meets the claimed exception.

(v) For each gas well affected facility required to comply with both §60.5375(a)(1) and (3), if you are using a digital photograph in lieu of the records required in paragraphs (c)(1)(i) through (iv) of this section, you must retain the records of the digital photograph as specified in §60.5410(a)(4).

(2) For each centrifugal compressor affected facility, you must maintain records of deviations in cases where the centrifugal compressor was not operated in compliance with the requirements specified in §60.5380.

(3) For each reciprocating compressors affected facility, you must maintain the records in paragraphs (c)(3)(i) through (iii) of this section.

(i) Records of the cumulative number of hours of operation or number of months since initial startup or October 15, 2012, or the previous replacement of the reciprocating compressor rod packing, whichever is later.

(ii) Records of the date and time of each reciprocating compressor rod packing replacement.

(iii) Records of deviations in cases where the reciprocating compressor was not operated in compliance with the requirements specified in §60.5385.

(4) For each pneumatic controller affected facility, you must maintain the records identified in paragraphs (c)(4)(i) through (v) of this section.

(i) Records of the date, location and manufacturer specifications for each pneumatic controller constructed, modified or reconstructed.
(ii) Records of the demonstration that the use of pneumatic controller affected facilities with a natural gas bleed rate greater than the applicable standard are required and the reasons why.

(iii) If the pneumatic controller is not located at a natural gas processing plant, records of the manufacturer's specifications indicating that the controller is designed such that natural gas bleed rate is less than or equal to 6 standard cubic feet per hour.

(iv) If the pneumatic controller is located at a natural gas processing plant, records of the documentation that the natural gas bleed rate is zero.

(v) Records of deviations in cases where the pneumatic controller was not operated in compliance with the requirements specified in §60.5390.

(5) Except as specified in paragraph (c)(5)(v) of this section, for each storage vessel affected facility, you must maintain the records identified in paragraphs (c)(5)(i) through (iv) of this section.

(i) If required to reduce emissions by complying with §60.5395(d)(1), the records specified in §§60.5420(c)(6) through (8), §60.5416(c)(6)(ii), and §60.6516(c)(7)(ii) of this subpart.

(ii) Records of each VOC emissions determination for each storage vessel affected facility made under §60.5365(e) including identification of the model or calculation methodology used to calculate the VOC emission rate.

(iii) Records of deviations in cases where the storage vessel was not operated in compliance with the requirements specified in §§60.5395, 60.5411, 60.5412, and 60.5413, as applicable.

(iv) For storage vessels that are skid-mounted or permanently attached to something that is mobile (such as trucks, railcars, barges or ships), records indicating the number of consecutive days that the vessel is located at a site in the oil and natural gas production segment, natural gas processing segment or natural gas transmission and storage segment. If a storage vessel is removed from a site and, within 30 days, is either returned to or replaced by another storage vessel at the site to serve the same or similar function, then the entire period since the original storage vessel was first located at the site, including the days when the storage vessel was removed, will be added to the count towards the number of consecutive days.

(v) You must maintain records of the identification and location of each storage vessel affected facility.

(6) Records of each closed vent system inspection required under §60.5416(a)(1) for centrifugal compressors or §60.5416(c)(1) for storage vessels.

(7) A record of each cover inspection required under §60.5416(a)(3) for centrifugal compressors or §60.5416(c)(2) for storage vessels.

(8) If you are subject to the bypass requirements of §60.5416(a)(4) for centrifugal compressors or §60.5416(c)(3) for storage vessels, a record of each inspection or a record each time the key is checked out or a record of each time the alarm is sounded.

(9) If you are subject to the closed vent system no detectable emissions requirements of §60.5416(b) for centrifugal compressors, a record of the monitoring conducted in accordance with §60.5416(b).

(10) For each centrifugal compressor affected facility, records of the schedule for carbon replacement (as determined by the design analysis requirements of §60.5413(c)(2) or (3)) and records of each carbon replacement as specified in §60.5412(c)(1).

(11) For each centrifugal compressor subject to the control device requirements of §60.5412(a), (b), and (c), records of minimum and maximum operating parameter values, continuous parameter monitoring system data, calculated averages of continuous parameter monitoring system data, results of all compliance calculations, and results of all inspections.

(12) For each carbon adsorber installed on storage vessel affected facilities, records of the schedule for carbon replacement (as determined by the design analysis requirements of §60.5412(d)(2)) and records of each carbon replacement as specified in §60.5412(c)(1).
(13) For each storage vessel affected facility subject to the control device requirements of §60.5412(c) and (d), you must maintain records of the inspections, including any corrective actions taken, the manufacturers' operating instructions, procedures and maintenance schedule as specified in §60.5417(h). You must maintain records of EPA Method 22, 40 CFR part 60, appendix A, section 11 results, which include: company, location, company representative (name of the person performing the observation), sky conditions, process unit (type of control device), clock start time, observation period duration (in minutes and seconds), accumulated emission time (in minutes and seconds), and clock end time. You may create your own form including the above information or use Figure 22-1 in EPA Method 22, 40 CFR part 60, appendix A. Manufacturer's operating instructions, procedures and maintenance schedule must be available for inspection.

The facility must comply with the applicable provisions upon startup of the facility.

§60.5421 What are my additional recordkeeping requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?

(a) You must comply with the requirements of paragraph (b) of this section in addition to the requirements of §60.486a.

(b) The following recordkeeping requirements apply to pressure relief devices subject to the requirements of §60.5401(b)(1) of this subpart.

(1) When each leak is detected as specified in §60.5401(b)(2), a weatherproof and readily visible identification, marked with the equipment identification number, must be attached to the leaking equipment. The identification on the pressure relief device may be removed after it has been repaired.

(2) When each leak is detected as specified in §60.5401(b)(2), the following information must be recorded in a log and shall be kept for 2 years in a readily accessible location:

(i) The instrument and operator identification numbers and the equipment identification number.

(ii) The date the leak was detected and the dates of each attempt to repair the leak.

(iii) Repair methods applied in each attempt to repair the leak.

(iv) “Above 500 ppm” if the maximum instrument reading measured by the methods specified in paragraph (a) of this section after each repair attempt is 500 ppm or greater.

(v) “Repair delayed” and the reason for the delay if a leak is not repaired within 15 calendar days after discovery of the leak.

(vi) The signature of the owner or operator (or designate) whose decision it was that repair could not be effected without a process shutdown.

(vii) The expected date of successful repair of the leak if a leak is not repaired within 15 days.

(viii) Dates of process unit shutdowns that occur while the equipment is unrepaired.

(ix) The date of successful repair of the leak.

(x) A list of identification numbers for equipment that are designated for no detectable emissions under the provisions of §60.482-4a(a). The designation of equipment subject to the provisions of §60.482-4a(a) must be signed by the owner or operator.

The facility must comply with the provisions upon startup of the facility.

§60.5422 What are my additional reporting requirements for my affected facility subject to VOC requirements for onshore natural gas processing plants?

(a) You must comply with the requirements of paragraphs (b) and (c) of this section in addition to the requirements of §60.487a(a), (b), (c)(2)(i) through (iv), and (c)(2)(vii) through (viii).
(b) An owner or operator must include the following information in the initial semiannual report in addition to the information required in §60.487a(b)(1) through (4): Number of pressure relief devices subject to the requirements of §60.5401(b) except for those pressure relief devices designated for no detectable emissions under the provisions of §60.482-4a(a) and those pressure relief devices complying with §60.482-4a(c).

(c) An owner or operator must include the following information in all semiannual reports in addition to the information required in §60.487a(c)(2)(i) through (vi):

1. Number of pressure relief devices for which leaks were detected as required in §60.5401(b)(2); and
2. Number of pressure relief devices for which leaks were not repaired as required in §60.5401(b)(3).

The facility must comply with the provisions upon startup of the facility.

§60.5423 What additional recordkeeping and reporting requirements apply to my sweetening unit affected facilities at onshore natural gas processing plants?

The facility does not have a sweetening unit and therefore these requirements are not applicable.

§60.5425 What part of the General Provisions apply to me?

Table 3 to this subpart shows which parts of the General Provisions in §§60.1 through 60.19 apply to you.

Table 3 to Subpart OOOO of Part 60—Applicability of General Provisions to Subpart OOOO

As stated in §60.5425, you must comply with the following applicable General Provisions:

<table>
<thead>
<tr>
<th>General provisions citation</th>
<th>Subject of citation</th>
<th>Applies to subpart?</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>§60.1</td>
<td>General applicability of the General Provisions</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.2</td>
<td>Definitions</td>
<td>Yes</td>
<td>Additional terms defined in §60.5430.</td>
</tr>
<tr>
<td>§60.3</td>
<td>Units and abbreviations</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.4</td>
<td>Address</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.5</td>
<td>Determination of construction or modification</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.6</td>
<td>Review of plans</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.7</td>
<td>Notification and record keeping</td>
<td>Yes</td>
<td>Except that §60.7 only applies as specified in §60.5420(a).</td>
</tr>
<tr>
<td>§60.8</td>
<td>Performance tests</td>
<td>Yes</td>
<td>Performance testing is required for control devices used on storage vessels and centrifugal compressors.</td>
</tr>
<tr>
<td>§60.9</td>
<td>Availability of information</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.10</td>
<td>State authority</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.11</td>
<td>Compliance with standards and maintenance requirements</td>
<td>No</td>
<td>Requirements are specified in subpart OOOO.</td>
</tr>
<tr>
<td>§60.12</td>
<td>Circumvention</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>§60.13</td>
<td>Monitoring requirements</td>
<td>Yes</td>
<td>Continuous monitors are required for storage vessels.</td>
</tr>
</tbody>
</table>
The facility will operate one compressor engine that may be subject to the requirements of 40 CFR 60 Subpart JJJJ depending on date of manufacture. The compressor IC engine is a 690 bhp natural gas-fired engine. Below is a breakdown of Subpart JJJJ. DEQ is delegated this Subpart.

40 CFR 60, Subpart JJJJ Standards of Performance for Stationary Spark Ignition Internal Combustion Engines

§60.4230 Am I subject to this subpart?

(a) The provisions of this subpart are applicable to manufacturers, owners, and operators of stationary spark ignition (SI) internal combustion engines (ICE) as specified in paragraphs (a)(1) through (6) of this section. For the purposes of this subpart, the date that construction commences is the date the engine is ordered by the owner or operator.

(4) Owners and operators of stationary SI ICE that commence construction after June 12, 2006, where the stationary SI ICE are manufactured:

(i) On or after July 1, 2007, for engines with a maximum engine power greater than or equal to 500 HP (except lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP);

(6) The provisions of §60.4236 of this subpart are applicable to all owners and operators of stationary SI ICE that commence construction after June 12, 2006.

The applicable IC engine is a stationary spark ignition engine that may be subject to the Subpart if they commence construction after June 12, 2006.

§60.4231 What emission standards must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing such engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4232 How long must my engines meet the emission standards if I am a manufacturer of stationary SI internal combustion engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4233 What emission standards must I meet if I am an owner or operator of a stationary SI internal combustion engine?
(e) Owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 75 KW (100 HP) (except gasoline and rich burn engines that use LPG) must comply with the emission standards in Table 1 to this subpart for their stationary SI ICE. For owners and operators of stationary SI ICE with a maximum engine power greater than or equal to 100 HP (except gasoline and rich burn engines that use LPG) manufactured prior to January 1, 2011 that were certified to the certification emission standards in 40 CFR part 1048 applicable to engines that are not severe duty engines, if such stationary SI ICE was certified to a carbon monoxide (CO) standard above the standard in Table 1 to this subpart, then the owners and operators may meet the CO certification (not field testing) standard for which the engine was certified.

Table 1 to Subpart JJJJ of Part 60—NO\textsubscript{X}, CO, and VOC Emission Standards for Stationary Non-Emergency SI Engines ≥100 HP (Except Gasoline and Rich Burn LPG), Stationary SI Landfill/Digester Gas Engines, and Stationary Emergency Engines >25 HP

<table>
<thead>
<tr>
<th>Engine type and fuel</th>
<th>Maximum engine power</th>
<th>Manufacture date</th>
<th>Emission standards*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Emergency SI Natural Gas and Non-Emergency SI Lean Burn LPG (except lean burn 500≤HP<1,350)</td>
<td>HP≥500</td>
<td>7/1/2007</td>
<td>NO\textsubscript{X} CO VOCa NO\textsubscript{X} CO VOCd</td>
</tr>
<tr>
<td></td>
<td>HP≥500</td>
<td>7/1/2010</td>
<td>2.0 4.0 1.0 160 540 86</td>
</tr>
</tbody>
</table>

*Owners and operators of stationary non-certified SI engines may choose to comply with the emission standards in units of either g/HP-hr or ppmvd at 15 percent O\textsubscript{2}.

*Owners and operators of new or reconstructed non-emergency lean burn SI stationary engines with a site rating of greater than or equal to 250 brake HP located at a major source that are meeting the requirements of 40 CFR part 63, subpart ZZZZ, Table 2a do not have to comply with the CO emission standards of Table 1 of this subpart.

The emission standards applicable to emergency engines between 25 HP and 130 HP are in terms of NO\textsubscript{X} + HC.

*For purposes of this subpart, when calculating emissions of volatile organic compounds, emissions of formaldehyde should not be included.

The applicable IC engine shall comply with the emission standards as shown above in Table 1 to the Subpart.

§60.4234 How long must I meet the emission standards if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE must operate and maintain stationary SI ICE that achieve the emission standards as required in §60.4233 over the entire life of the engine.

The applicable IC engine must meet the emission standards over the entire life of the engine.

§60.4236 What is the deadline for importing or installing stationary SI ICE produced in previous model years?

(b) After July 1, 2009, owners and operators may not install stationary SI ICE with a maximum engine power of greater than or equal to 500 HP that do not meet the applicable requirements in §60.4233, except that lean burn engines with a maximum engine power greater than or equal to 500 HP and less than 1,350 HP that do not meet the applicable requirements in §60.4233 may not be installed after January 1, 2010.

The applicable IC engine will be installed after July 1, 2009 and will have a maximum engine power less than 1,350 HP.

§60.4237 What are the monitoring requirements if I am an owner or operator of an emergency stationary SI internal combustion engine?

The applicable IC engine is not an emergency engine and therefore these requirements do not apply.

§60.4238 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines ≤19 KW (25 HP) or a manufacturer of equipment containing such engines?
The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4239 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that use gasoline or a manufacturer of equipment containing such engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4240 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines >19 KW (25 HP) that are rich burn engines that use LPG or a manufacturer of equipment containing such engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4241 What are my compliance requirements if I am a manufacturer of stationary SI internal combustion engines participating in the voluntary certification program or a manufacturer of equipment containing such engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4242 What other requirements must I meet if I am a manufacturer of stationary SI internal combustion engines or equipment containing stationary SI internal combustion engines or a manufacturer of equipment containing such engines?

The facility is not an engine manufacturer and therefore these requirements do not apply.

§60.4243 What are my compliance requirements if I am an owner or operator of a stationary SI internal combustion engine?

(b) If you are an owner or operator of a stationary SI internal combustion engine and must comply with the emission standards specified in §60.4233(d) or (e), you must demonstrate compliance according to one of the methods specified in paragraphs (b)(1) and (2) of this section.

(1) Purchasing an engine certified according to procedures specified in this subpart, for the same model year and demonstrating compliance according to one of the methods specified in paragraph (a) of this section.

(2) Purchasing a non-certified engine and demonstrating compliance with the emission standards specified in §60.4233(d) or (e) and according to the requirements specified in §60.4244, as applicable, and according to paragraphs (b)(2)(i) and (ii) of this section.

(ii) If you are an owner or operator of a stationary SI internal combustion engine greater than 500 HP, you must keep a maintenance plan and records of conducted maintenance and must, to the extent practicable, maintain and operate the engine in a manner consistent with good air pollution control practice for minimizing emissions. In addition, you must conduct an initial performance test and conduct subsequent performance testing every 8,760 hours or 3 years, whichever comes first, thereafter to demonstrate compliance.

(e) Owners and operators of stationary SI natural gas fired engines may operate their engines using propane for a maximum of 100 hours per year as an alternative fuel solely during emergency operations, but must keep records of such use. If propane is used for more than 100 hours per year in an engine that is not certified to the emission standards when using propane, the owners and operators are required to conduct a performance test to demonstrate compliance with the emission standards of §60.4233.

(g) It is expected that air-to-fuel ratio controllers will be used with the operation of three-way catalysts/non-selective catalytic reduction. The AFR controller must be maintained and operated appropriately in order to ensure proper operation of the engine and control device to minimize emissions at all times.

The permittee shall keep a maintenance plan and records for minimizing emissions. Performance tests will be required according to the schedule stated above.

§60.4244 What test methods and other procedures must I use if I am an owner or operator of a stationary SI internal combustion engine?

Owners and operators of stationary SI ICE who conduct performance tests must follow the procedures in paragraphs (a) through (f) of this section.
(a) Each performance test must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and according to the requirements in §60.8 and under the specific conditions that are specified by Table 2 to this subpart.

(b) You may not conduct performance tests during periods of startup, shutdown, or malfunction, as specified in §60.8(c). If your stationary SI internal combustion engine is non-operational, you do not need to startup the engine solely to conduct a performance test; however, you must conduct the performance test immediately upon startup of the engine.

(c) You must conduct three separate test runs for each performance test required in this section, as specified in §60.8(f). Each test run must be conducted within 10 percent of 100 percent peak (or the highest achievable) load and last at least 1 hour.

(d) To determine compliance with the NOx mass per unit output emission limitation, convert the concentration of NOx in the engine exhaust using Equation 1 of this section:

\[
ER = \frac{C_x \times 1.912 \times 10^{-3} \times Q \times T}{HP - hr} \quad \text{(Eq. 1)}
\]

Where:

- \(ER\) = Emission rate of NOx in g/HP-hr.
- \(C_x\) = Measured NOx concentration in parts per million by volume (ppmv).
- \(1.912 \times 10^{-3}\) = Conversion constant for ppm NOx to grams per standard cubic meter at 20 degrees Celsius.
- \(Q\) = Stack gas volumetric flow rate, in standard cubic meter per hour, dry basis.
- \(T\) = Time of test run, in hours.
- \(HP - hr\) = Brake work of the engine, horsepower-hour (HP-hr).

(e) To determine compliance with the CO mass per unit output emission limitation, convert the concentration of CO in the engine exhaust using Equation 2 of this section:

\[
ER = \frac{C_x \times 1.164 \times 10^{-3} \times Q \times T}{HP - hr} \quad \text{(Eq. 2)}
\]

Where:

- \(ER\) = Emission rate of CO in g/HP-hr.
- \(C_x\) = Measured CO concentration in ppmv.
- \(1.164 \times 10^{-3}\) = Conversion constant for ppm CO to grams per standard cubic meter at 20 degrees Celsius.
- \(Q\) = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.
- \(T\) = Time of test run, in hours.
- \(HP - hr\) = Brake work of the engine, in HP-hr.

(f) For purposes of this subpart, when calculating emissions of VOC, emissions of formaldehyde should not be included. To determine compliance with the VOC mass per unit output emission limitation, convert the concentration of VOC in the engine exhaust using Equation 3 of this section:

\[
ER = \frac{C_x \times 1.833 \times 10^{-3} \times Q \times T}{HP - hr} \quad \text{(Eq. 3)}
\]

Where:

- \(ER\) = Emission rate of VOC in g/HP-hr.
- \(C_x\) = VOC concentration measured as propane in ppmv.
1.833×10^{-1} = Conversion constant for ppm VOC measured as propane, to grams per standard cubic meter at 20 degrees Celsius.

Q = Stack gas volumetric flow rate, in standard cubic meters per hour, dry basis.

T = Time of test run, in hours.

HP-hr = Brake work of the engine, in HP-hr.

(g) If the owner/operator chooses to measure VOC emissions using either Method 18 of 40 CFR part 60, appendix A, or Method 320 of 40 CFR part 63, appendix A, then it has the option of correcting the measured VOC emissions to account for the potential differences in measured values between these methods and Method 25A. The results from Method 18 and Method 320 can be corrected for response factor differences using Equations 4 and 5 of this section. The corrected VOC concentration can then be placed on a propane basis using Equation 6 of this section.

$$RF_i = \frac{C_{m}}{C_{ai}} \quad (\text{Eq. 4})$$

Where:

RF_i = Response factor of compound i when measured with EPA Method 25A.

C_{m} = Measured concentration of compound i in ppmv as carbon.

C_{ai} = True concentration of compound i in ppmv as carbon.

$$C_{aav} = RF_i \times C_{mav} \quad (\text{Eq. 5})$$

Where:

C_{aav} = Concentration of compound i corrected to the value that would have been measured by EPA Method 25A, ppmv as carbon.

C_{mav} = Concentration of compound i measured by EPA Method 320, ppmv as carbon.

$$C_{eq} = 0.6098 \times C_{lo} \quad (\text{Eq. 6})$$

Where:

C_{eq} = Concentration of compound i in mg of propane equivalent per DSCM.

The permittee shall conduct performance tests according to the procedures outlined above.

§60.4245 What are my notification, reporting, and recordkeeping requirements if I am an owner or operator of a stationary SI internal combustion engine?

Owners or operators of stationary SI ICE must meet the following notification, reporting and recordkeeping requirements.

(a) Owners and operators of all stationary SI ICE must keep records of the information in paragraphs (a)(1) through (4) of this section.

(1) All notifications submitted to comply with this subpart and all documentation supporting any notification.

(2) Maintenance conducted on the engine.

(4) If the stationary SI internal combustion engine is not a certified engine or is a certified engine operating in a non-certified manner and subject to §60.4243(a)(2), documentation that the engine meets the emission standards.

(c) Owners and operators of stationary SI ICE greater than or equal to 500 HP that have not been certified by an engine manufacturer to meet the emission standards in §60.4231 must submit an initial notification as required in §60.7(a)(1). The notification must include the information in paragraphs (c)(1) through (5) of this section.

(1) Name and address of the owner or operator;
(2) The address of the affected source;

(3) Engine information including make, model, engine family, serial number, model year, maximum engine power, and engine displacement;

(4) Emission control equipment; and

(5) Fuel used.

(d) Owners and operators of stationary SI ICE that are subject to performance testing must submit a copy of each performance test as conducted in §60.4244 within 60 days after the test has been completed.

If the applicable IC engine is not certified by the manufacturer, the permittee shall comply with the requirements above.

NESHAP Applicability (40 CFR 61)

The facility is not subject to any NESHAP requirements in 40 CFR 61.

MACT Applicability (40 CFR 63)

The facility will operate one compressor engine that may be subject to the requirements of 40 CFR 63 Subpart ZZZZ depending on date of manufacture. The compressor IC engine is a 690 bhp natural gas-fired engine. Below is a breakdown of Subpart ZZZZ. DEQ is delegated this Subpart.

40 CFR 63, Subpart ZZZZ................................National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines

§63.6585 Am I subject to this subpart?

You are subject to this subpart if you own or operate a stationary RICE at a major or area source of HAP emissions, except if the stationary RICE is being tested at a stationary RICE test cell/stand.

(a) A stationary RICE is any internal combustion engine which uses reciprocating motion to convert heat energy into mechanical work and which is not mobile. Stationary RICE differ from mobile RICE in that a stationary RICE is not a non-road engine as defined at 40 CFR 1068.30, and is not used to propel a motor vehicle or a vehicle used solely for competition.

(b) A major source of HAP emissions is a plant site that emits or has the potential to emit any single HAP at a rate of 10 tons (9.07 megagrams) or more per year or any combination of HAP at a rate of 25 tons (22.68 megagrams) or more per year, except that for oil and gas production facilities, a major source of HAP emissions is determined for each surface site.

(c) An area source of HAP emissions is a source that is not a major source.

The facility will operate one non-emergency engine. In addition, the facility is an area source for HAPs as they are below the major source threshold of 10 T/yr for any one federally regulated HAP and 25 T/yr for all HAPs combined.

§63.6590 What parts of my plant does this subpart cover?

This subpart applies to each affected source.

(a) Affected source. An affected source is any existing, new, or reconstructed stationary RICE located at a major or area source of HAP emissions, excluding stationary RICE being tested at a stationary RICE test cell/stand.

(1) Existing stationary RICE.

(i) For stationary RICE with a site rating of more than 500 brake horsepower (HP) located at a major source of HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary RICE before December 19, 2002.
(ii) For stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of
HAP emissions, a stationary RICE is existing if you commenced construction or reconstruction of the stationary
RICE before June 12, 2006.

(iii) For stationary RICE located at an area source of HAP emissions, a stationary RICE is existing if you
commenced construction or reconstruction of the stationary RICE before June 12, 2006.

(iv) A change in ownership of an existing stationary RICE does not make that stationary RICE a new or
reconstructed stationary RICE.

(2) New stationary RICE. (i) A stationary RICE with a site rating of more than 500 brake HP located at a major
source of HAP emissions is new if you commenced construction of the stationary RICE on or after December 19,
2002.

(ii) A stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP
emissions is new if you commenced construction of the stationary RICE on or after June 12, 2006.

(iii) A stationary RICE located at an area source of HAP emissions is new if you commenced construction of the
stationary RICE on or after June 12, 2006.

(c) Stationary RICE subject to Regulations under 40 CFR Part 60. An affected source that meets any of the
criteria in paragraphs (c)(1) through (7) of this section must meet the requirements of this part by meeting the
requirements of 40 CFR part 60 subpart III, for compression ignition engines or 40 CFR part 60 subpart JJJJ,
for spark ignition engines. No further requirements apply for such engines under this part.

(1) A new or reconstructed stationary RICE located at an area source;

The IC engine to be located at the facility will be considered existing if they commenced construction of the
eengine before June 12, 2006. If the engine installed is considered new they will be subject to the regulations of 40
CFR Part 60 Subpart JJJJ.

§63.6595 When do I have to comply with this subpart?

(a) Affected sources. (1) If you have an existing stationary RICE, excluding existing non-emergency CI stationary
RICE, with a site rating of more than 500 brake HP located at a major source of HAP emissions, you must
comply with the applicable emission limitations, operating limitations and other requirements no later than June
15, 2007. If you have an existing non-emergency CI stationary RICE with a site rating of more than 500 brake
HP located at a major source of HAP emissions, an existing stationary CI RICE with a site rating of less than or
equal to 500 brake HP located at a major source of HAP emissions, or an existing stationary CI RICE located at
an area source of HAP emissions, you must comply with the applicable emission limitations, operating
limitations, and other requirements no later than May 3, 2013. If you have an existing stationary SI RICE with a
site rating of less than or equal to 500 brake HP located at a major source of HAP emissions, or an existing
stationary SI RICE located at an area source of HAP emissions, you must comply with the applicable emission
limitations, operating limitations, and other requirements no later than October 19, 2013.

(c) If you own or operate an affected source, you must meet the applicable notification requirements in §63.6645
and in 40 CFR part 63, subpart A.

The IC engine must be in compliance with the Subpart no later than October 19, 2013 or upon installation.

§63.6600 What emission limitations and operating limitations must I meet if I own or operate a
stationary RICE with a site rating of more than 500 brake HP located at a major source of
HAP emissions?

The applicable IC engine is not operating at a major source for HAP emissions. Therefore there are no applicable
emission and operating limitations under this section.

§63.6601 What emission limitations must I meet if I own or operate a new or reconstructed 4SLB
stationary RICE with a site rating of greater than or equal to 250 brake HP and less than
or equal to 500 brake HP located at a major source of HAP emissions?
The applicable IC engine is not operating at a major source for HAP emissions and the engine is not 4-stroke lean burn spark ignition between 250 and 500 bhp. Therefore there are no applicable emission and operating limitations under this section.

§63.6602 What emission limitations and other requirements must I meet if I own or operate an existing stationary RICE with a site rating of equal to or less than 500 brake HP located at a major source of HAP emissions?

The applicable IC engine is not operating at a major source for HAP emissions. Therefore there are no applicable emission and operating limitations under this section.

§63.6603 What emission limitations, operating limitations, and other requirements must I meet if I own or operate an existing stationary RICE located at an area source of HAP emissions?

Compliance with the numerical emission limitations established in this subpart is based on the results of testing the average of three 1-hour runs using the testing requirements and procedures in §63.6620 and Table 4 to this subpart.

(a) If you own or operate an existing stationary RICE located at an area source of HAP emissions, you must comply with the requirements in Table 2d to this subpart and the operating limitations in Table 2b to this subpart that apply to you.

Table 2b does not apply to the IC engine at the facility. The engine is not CI stationary RICE and is not located at a major source of HAP emissions. Table 2d identifies those limitations required by area sources to comply with the Subpart. The specifics of Table 2d require that the permittee install NSCR (non-selective catalytic reduction) to reduce HAP emissions from the stationary RICE.

§63.6604 What fuel requirements must I meet if I own or operate a stationary CI RICE?

The applicable IC engine is not a stationary CI RICE. Therefore there are no applicable emission and operating limitations under this section.

§63.6605 What are my general requirements for complying with this subpart?

(a) You must be in compliance with the emission limitations, operating limitations, and other requirements in this subpart that apply to you at all times.

(b) At all times you must operate and maintain any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. The general duty to minimize emissions does not require you to make any further efforts to reduce emissions if levels required by this standard have been achieved. Determination of whether such operation and maintenance procedures are being used will be based on information available to the Administrator which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source.

When operating the IC engine, it must be operated in a manner that is consistent with reducing emissions and compliance with appropriate limitations applies at all times.

§63.6610 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a stationary RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions?

The applicable IC engine is not operating at a major source for HAP emissions. Therefore there are no applicable emission and operating limitations under this section.

§63.6611 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate a new or reconstructed 4SLB SI stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions?

The applicable IC engine is not operating at a major source for HAP emissions. Therefore there are no applicable emission and operating limitations under this section.
§63.6612 By what date must I conduct the initial performance tests or other initial compliance demonstrations if I own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions?

If you own or operate an existing stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing stationary RICE located at an area source of HAP emissions you are subject to the requirements of this section.

(a) You must conduct any initial performance test or other initial compliance demonstration according to Tables 4 and 5 to this subpart that apply to you within 180 days after the compliance date that is specified for your stationary RICE in §63.6595 and according to the provisions in §63.7(a)(2).

(b) An owner or operator is not required to conduct an initial performance test on a unit for which a performance test has been previously conducted, but the test must meet all of the conditions described in paragraphs (b)(1) through (4) of this section.

1) The test must have been conducted using the same methods specified in this subpart, and these methods must have been followed correctly.

2) The test must not be older than 2 years.

3) The test must be reviewed and accepted by the Administrator.

4) Either no process or equipment changes must have been made since the test was performed, or the owner or operator must be able to demonstrate that the results of the performance test, with or without adjustments, reliably demonstrate compliance despite process or equipment changes.

Table 5 requires the applicable IC engine to comply with the requirement to install NSCR using an oxidation catalyst. Initial compliance has been demonstrated if the average reduction of emissions of CO is 75 percent or more, the average CO concentration is less than or equal to 270 ppmv at 15 percent O₂, or the average reduction of emissions of THC is 30 percent or more. Initial compliance has also been demonstrated if a CPMS has been installed to continuously monitor catalyst inlet temperature according to the requirements in §63.6625(b), or if equipment has been installed to automatically shut down the engine if the catalyst inlet temperature exceeds 1250 °F.

§63.6615 When must I conduct subsequent performance tests?

If you must comply with the emission limitations and operating limitations, you must conduct subsequent performance tests as specified in Table 3 of this subpart.

The applicable IC engine is not subject to subsequent performance tests as specified in Table 3.

§63.6620 What performance tests and other procedures must I use?

(a) You must conduct each performance test in Tables 3 and 4 of this subpart that applies to you.

(b) Each performance test must be conducted according to the requirements that this subpart specifies in Table 4 to this subpart. If you own or operate a non-operational stationary RICE that is subject to performance testing, you do not need to start up the engine solely to conduct the performance test. Owners and operators of a non-operational engine can conduct the performance test when the engine is started up again. The test must be conducted at any load condition within plus or minus 10 percent of 100 percent load for the stationary RICE listed in paragraphs (b)(1) through (4) of this section.

1) Non-emergency 4SRB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

2) New non-emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 brake HP located at a major source of HAP emissions.

3) New non-emergency 2SLB stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.
(4) New non-emergency CI stationary RICE with a site rating of greater than 500 brake HP located at a major source of HAP emissions.

(c) [Reserved]

(d) You must conduct three separate test runs for each performance test required in this section, as specified in §63.7(e)(3). Each test run must last at least 1 hour, unless otherwise specified in this subpart.

(e)(1) You must use Equation 1 of this section to determine compliance with the percent reduction requirement:

\[
\frac{C_i - C_o}{C_i} \times 100 = R \quad (\text{Eq. 1})
\]

Where:

- \(C_i\) = concentration of carbon monoxide (CO), total hydrocarbons (THC), or formaldehyde at the control device inlet,
- \(C_o\) = concentration of CO, THC, or formaldehyde at the control device outlet, and
- \(R\) = percent reduction of CO, THC, or formaldehyde emissions.

(2) You must normalize the CO, THC, or formaldehyde concentrations at the inlet and outlet of the control device to a dry basis and to 15 percent oxygen, or an equivalent percent carbon dioxide (CO₂). If pollutant concentrations are to be corrected to 15 percent oxygen and CO, concentration is measured in lieu of oxygen concentration measurement, a CO, correction factor is needed. Calculate the CO, correction factor as described in paragraphs (e)(2)(i) through (iii) of this section.

(i) Calculate the fuel-specific \(F_o\) value for the fuel burned during the test using values obtained from Method 19, Section 5.2, and the following equation:

\[
F_o = \frac{0.209 \times \frac{F_d}{F_c}} {F_o} \quad (\text{Eq. 2})
\]

Where:

- \(F_o\) = Fuel factor based on the ratio of oxygen volume to the ultimate CO₂ volume produced by the fuel at zero percent excess air.
- 0.209 = Fraction of air that is oxygen, percent/100.
- \(F_d\) = Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from Method 19, dsm/J (dscf/10⁴ Btu).
- \(F_c\) = Ratio of the volume of CO₂ produced to the gross calorific value of the fuel from Method 19, dsm/J (dscf/10⁴ Btu).

(ii) Calculate the CO₂ correction factor for correcting measurement data to 15 percent \(O_2\) as follows:

\[
X_{CO_2} = \frac{5.9}{F_o} \quad (\text{Eq. 3})
\]

Where:

- \(X_{CO_2}\) = CO₂ correction factor, percent.
- 5.9 = 20.9 percent \(O_2\) — 15 percent \(O_2\), the defined \(O_2\) correction value, percent.

(iii) Calculate the CO, THC, and formaldehyde gas concentrations adjusted to 15 percent \(O_2\) using CO₂, as follows:

\[
c_{adj} = c_d \times \frac{X_{CO_2}}{1} \quad (\text{Eq. 4})
\]

Where:

- \(c_{adj}\) = Calculated concentration of CO, THC, or formaldehyde adjusted to 15 percent \(O_2\).
- \(c_d\) = Measured concentration of CO, THC, or formaldehyde, uncorrected.
\(X_{\text{CO}_2} = \text{CO}_2 \text{ correction factor, percent.} \)

\(\%\text{CO}_2 = \text{Measured } \text{CO}_2 \text{ concentration measured, dry basis, percent.} \)

(f) If you comply with the emission limitation to reduce CO and you are not using an oxidation catalyst, if you comply with the emission limitation to reduce formaldehyde and you are not using NSCR, or if you comply with the emission limitation to limit the concentration of formaldehyde in the stationary RICE exhaust and you are not using an oxidation catalyst or NSCR, you must petition the Administrator for operating limitations to be established during the initial performance test and continuously monitored thereafter; or for approval of no operating limitations. You must not conduct the initial performance test until after the petition has been approved by the Administrator.

(g) If you petition the Administrator for approval of operating limitations, your petition must include the information described in paragraphs (g)(1) through (5) of this section.

(1) Identification of the specific parameters you propose to use as operating limitations;

(2) A discussion of the relationship between these parameters and HAP emissions, identifying how HAP emissions change with changes in these parameters, and how limitations on these parameters will serve to limit HAP emissions;

(3) A discussion of how you will establish the upper and/or lower values for these parameters which will establish the limits on these parameters in the operating limitations;

(4) A discussion identifying the methods you will use to measure and the instruments you will use to monitor these parameters, as well as the relative accuracy and precision of these methods and instruments; and

(5) A discussion identifying the frequency and methods for recalibrating the instruments you will use for monitoring these parameters.

(h) If you petition the Administrator for approval of no operating limitations, your petition must include the information described in paragraphs (h)(1) through (7) of this section.

(1) Identification of the parameters associated with operation of the stationary RICE and any emission control device which could change intentionally (e.g., operator adjustment, automatic controller adjustment, etc.) or unintentionally (e.g., wear and tear, error, etc.) on a routine basis or over time;

(2) A discussion of the relationship, if any, between changes in the parameters and changes in HAP emissions;

(3) For the parameters which could change in such a way as to increase HAP emissions, a discussion of whether establishing limitations on the parameters would serve to limit HAP emissions;

(4) For the parameters which could change in such a way as to increase HAP emissions, a discussion of how you could establish upper and/or lower values for the parameters which would establish limits on the parameters in operating limitations;

(5) For the parameters, a discussion identifying the methods you could use to measure them and the instruments you could use to monitor them, as well as the relative accuracy and precision of the methods and instruments;

(6) For the parameters, a discussion identifying the frequency and methods for recalibrating the instruments you could use to monitor them; and

(7) A discussion of why, from your point of view, it is infeasible or unreasonable to adopt the parameters as operating limitations.

(i) The engine percent load during a performance test must be determined by documenting the calculations, assumptions, and measurement devices used to measure or estimate the percent load in a specific application. A written report of the average percent load determination must be included in the notification of compliance status. The following information must be included in the written report: the engine model number, the engine manufacturer, the year of purchase, the manufacturer's site-rated brake horsepower, the ambient temperature, pressure, and humidity during the performance test, and all assumptions that were made to estimate or calculate percent load during the performance test must be clearly explained. If measurement devices such as flow meters, kilowatt meters, beta analyzers, stain gauges, etc. are used, the model number of the measurement device, and an
estimate of its accurate in percentage of true value must be provided.

The applicable IC engine is not subject to the subsequent performance tests criteria listed above.

§63.6625 What are my monitoring, installation, collection, operation, and maintenance requirements?

(a) If you elect to install a CEMS as specified in Table 5 of this subpart, you must install, operate, and maintain a CEMS to monitor CO and either O, or CO, according to the requirements in paragraphs (a)(1) through (4) of this section. If you are meeting a requirement to reduce CO emissions, the CEMS must be installed at both the inlet and outlet of the control device. If you are meeting a requirement to limit the concentration of CO, the CEMS must be installed at the outlet of the control device.

A CEMS is not required and will not be installed on the applicable IC engine. Therefore this requirement is not applicable.

(b) If you are required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of this subpart, you must install, operate, and maintain each CPMS according to the requirements in paragraphs (b)(1) through (6) of this section. For an affected source that is complying with the emission limitations and operating limitations on March 9, 2011, the requirements in paragraph (b) of this section are applicable September 6, 2011.

A CPMS is not required and will not be installed on the applicable IC engine. Therefore this requirement is not applicable.

(c) If you are operating a new or reconstructed stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, you must monitor and record your fuel usage daily with separate fuel meters to measure the volumetric flow rate of each fuel. In addition, you must operate your stationary RICE in a manner which reasonably minimizes HAP emissions.

The applicable IC engine will not use landfill or digester gas as fuel. Therefore there are no applicable requirements under this section.

(d) If you are operating a new or reconstructed emergency 4SLB stationary RICE with a site rating of greater than or equal to 250 and less than or equal to 500 brake HP located at a major source of HAP emissions, you must install a non-resettable hour meter prior to the startup of the engine.

The applicable IC engine is not operating at a major source for HAP emissions. Therefore there are no applicable requirements under this section.

(e) If you own or operate any of the following stationary RICE, you must operate and maintain the stationary RICE and after-treatment control device (if any) according to the manufacturer's emission-related written instructions or develop your own maintenance plan which must provide to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution control practice for minimizing emissions:

(1) An existing stationary RICE with a site rating of less than 100 HP located at a major source of HAP emissions;

(2) An existing emergency or black start stationary RICE with a site rating of less than or equal to 500 HP located at a major source of HAP emissions;

(3) An existing emergency or black start stationary RICE located at an area source of HAP emissions;

(4) An existing non-emergency, non-black start stationary CI RICE with a site rating less than or equal to 300 HP located at an area source of HAP emissions;

(5) An existing non-emergency, non-black start 2SLB stationary RICE located at an area source of HAP emissions;

(6) An existing non-emergency, non-black start stationary RICE located at an area source of HAP emissions whichcombusts landfill or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis.
(7) An existing non-emergency, non-black start 4SLB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(8) An existing non-emergency, non-black start 4SRB stationary RICE with a site rating less than or equal to 500 HP located at an area source of HAP emissions;

(9) An existing, non-emergency, non-black start 4SLB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year; and

(10) An existing, non-emergency, non-black start 4SRB stationary RICE with a site rating greater than 500 HP located at an area source of HAP emissions that is operated 24 hours or less per calendar year.

The applicable IC engine does not fall into one of the ten categories listed above. Therefore there are no applicable requirements under this section.

(f) If you own or operate an existing emergency stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions or an existing emergency stationary RICE located at an area source of HAP emissions, you must install a non-resettable hour meter if one is not already installed.

The applicable IC engine is not emergency stationary RICE. Therefore there are no applicable requirements under this section.

(g) If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either paragraph (g)(1) or paragraph (2) of this section. Owners and operators must follow the manufacturer’s specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. Existing CI engines located at area sources in areas of Alaska that meet either §63.6603(b)(1) or §63.6603(b)(2) do not have to meet the requirements of this paragraph (g). Existing CI engines located on offshore vessels that meet §63.6603(c) do not have to meet the requirements of this paragraph (g).

The applicable IC engine is not a CI engine. Therefore there are no applicable requirements under this section.

(h) If you operate a new, reconstructed, or existing stationary engine, you must minimize the engine’s time spent at idle during startup and minimize the engine’s startup time to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the emission standards applicable to all times other than startup in Tables 1a, 2a, 2c, and 2d to this subpart apply.

Idle startup time may not exceed 30 minutes for the applicable IC engine.

(i) If you own or operate a stationary CI engine that is subject to the work, operation or management practices in items 1 or 2 of Table 2c to this subpart or in items 1 or 4 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

The applicable IC engine is not a CI engine. Therefore there are no applicable requirements under this section.
(j) If you own or operate a stationary SI engine that is subject to the work, operation or management practices in items 6, 7, or 8 of Table 2c to this subpart or in items 5, 6, 7, 9, or 11 of Table 2d to this subpart, you have the option of utilizing an oil analysis program in order to extend the specified oil change requirement in Tables 2c and 2d to this subpart. The oil analysis must be performed at the same frequency specified for changing the oil in Table 2c or 2d to this subpart. The analysis program must at a minimum analyze the following three parameters: Total Acid Number, viscosity, and percent water content. The condemning limits for these parameters are as follows: Total Acid Number increases by more than 3.0 milligrams of potassium hydroxide (KOH) per gram from Total Acid Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine owner or operator must change the oil within 2 business days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 business days or before commencing operation, whichever is later. The owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine.

The applicable IC engine is not subject to the items in Table 2d and therefore there are no applicable requirements under this section.

§63.6630 How do I demonstrate initial compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate initial compliance with each emission limitation, operating limitation, and other requirement that applies to you according to Table 5 of this subpart.

(b) During the initial performance test, you must establish each operating limitation in Tables 1b and 2b of this subpart that applies to you.

(c) You must submit the Notification of Compliance Status containing the results of the initial compliance demonstration according to the requirements in §63.6645.

(d) Non-emergency 4SRB stationary RICE complying with the requirement to reduce formaldehyde emissions by 76 percent or more can demonstrate initial compliance with the formaldehyde emission limit by testing for THC instead of formaldehyde. The testing must be conducted according to the requirements in Table 4 of this subpart. The average reduction of emissions of THC determined from the performance test must be equal to or greater than 30 percent.

(e) The initial compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

1. The compliance demonstration must consist of at least three test runs.

2. Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

3. If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

4. If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

5. You must measure O₂, using one of the O₂ measurement methods specified in Table 4 of this subpart. Measurements to determine O₂ concentration must be made at the same time as the measurements for CO or THC concentration.
(6) If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and \(O_2 \) emissions simultaneously at the inlet and outlet of the control device.

The permittee is subject to the requirements of 40 CFR 63.6630(e) as outlined above.

§63.6635 How do I monitor and collect data to demonstrate continuous compliance?

(a) If you must comply with emission and operating limitations, you must monitor and collect data according to this section.

(b) Except for monitor malfunctions, associated repairs, required performance evaluations, and required quality assurance or control activities, you must monitor continuously at all times that the stationary RICE is operating. A monitoring malfunction is any sudden, infrequent, not reasonably preventable failure of the monitoring to provide valid data. Monitoring failures that are caused in part by poor maintenance or careless operation are not malfunctions.

(c) You may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. You must, however, use all the valid data collected during all other periods.

The permittee must monitor and collect data continuously for the applicable IC engine except in instances included in §63.6635 (b).

§63.6640 How do I demonstrate continuous compliance with the emission limitations, operating limitations, and other requirements?

(a) You must demonstrate continuous compliance with each emission limitation, operating limitation, and other requirements in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you according to methods specified in Table 6 to this subpart.

(b) You must report each instance in which you did not meet each emission limitation or operating limitation in Tables 1a and 1b, Tables 2a and 2b, Table 2c, and Table 2d to this subpart that apply to you. These instances are deviations from the emission and operating limitations in this subpart. These deviations must be reported according to the requirements in §63.6650. If you change your catalyst, you must reestablish the values of the operating parameters measured during the initial performance test. When you reestablish the values of your operating parameters, you must also conduct a performance test to demonstrate that you are meeting the required emission limitation applicable to your stationary RICE.

(c) The annual compliance demonstration required for existing non-emergency 4SLB and 4SRB stationary RICE with a site rating of more than 500 HP located at an area source of HAP that are not remote stationary RICE and that are operated more than 24 hours per calendar year must be conducted according to the following requirements:

1. The compliance demonstration must consist of at least one test run.

2. Each test run must be of at least 15 minute duration, except that each test conducted using the method in appendix A to this subpart must consist of at least one measurement cycle and include at least 2 minutes of test data phase measurement.

3. If you are demonstrating compliance with the CO concentration or CO percent reduction requirement, you must measure CO emissions using one of the CO measurement methods specified in Table 4 of this subpart, or using appendix A to this subpart.

4. If you are demonstrating compliance with the THC percent reduction requirement, you must measure THC emissions using Method 25A, reported as propane, of 40 CFR part 60, appendix A.

5. You must measure \(O_2 \), using one of the \(O_2 \) measurement methods specified in Table 4 of this subpart. Measurements to determine \(O_2 \) concentration must be made at the same time as the measurements for CO or THC concentration.

6. If you are demonstrating compliance with the CO or THC percent reduction requirement, you must measure CO or THC emissions and \(O_2 \) emissions simultaneously at the inlet and outlet of the control device.
(7) If the results of the annual compliance demonstration show that the emissions exceed the levels specified in Table 6 of this subpart, the stationary RICE must be shut down as soon as safely possible, and appropriate corrective action must be taken (e.g., repairs, catalyst cleaning, catalyst replacement). The stationary RICE must be retested within 7 days of being restarted and the emissions must meet the levels specified in Table 6 of this subpart. If the retest shows that the emissions continue to exceed the specified levels, the stationary RICE must again be shut down as soon as safely possible, and the stationary RICE may not operate, except for purposes of startup and testing, until the owner/operator demonstrates through testing that the emissions do not exceed the levels specified in Table 6 of this subpart.

(e) You must also report each instance in which you did not meet the requirements in Table 8 to this subpart that apply to you. If you own or operate a new or reconstructed stationary RICE with a site rating of less than or equal to 500 brake HP located at a major source of HAP emissions (except new or reconstructed 4SLB engines greater than or equal to 250 and less than or equal to 500 brake HP), a new or reconstructed stationary RICE located at an area source of HAP emissions, or any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart: An existing 2SLB stationary RICE, an existing 4SLB stationary RICE, an existing emergency stationary RICE, an existing limited use stationary RICE, or an existing stationary RICE which fires landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis. If you own or operate any of the following RICE with a site rating of more than 500 brake HP located at a major source of HAP emissions, you do not need to comply with the requirements in Table 8 to this subpart, except for the initial notification requirements: a new or reconstructed stationary RICE that combusts landfill gas or digester gas equivalent to 10 percent or more of the gross heat input on an annual basis, a new or reconstructed emergency stationary RICE, or a new or reconstructed limited use stationary RICE.

The applicable IC engine will demonstrate compliance through the annual compliance test according to §63.6640(c) above.

§63.6645 What notifications must I submit and when?

(a) You must submit all of the notifications in §§63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified if you own or operate any of the following:

(2) An existing stationary RICE located at an area source of HAP emissions.

(g) If you are required to conduct a performance test, you must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in §63.7(b)(1). (h) If you are required to conduct a performance test or other initial compliance demonstration as specified in Tables 4 and 5 to this subpart, you must submit a Notification of Compliance Status according to §63.9(h)(2)(ii).

(1) For each initial compliance demonstration required in Table 5 to this subpart that does not include a performance test, you must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.

(2) For each initial compliance demonstration required in Table 5 to this subpart that includes a performance test conducted according to the requirements in Table 3 to this subpart, you must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to §63.10(d)(2).

The facility must comply with the notification requirements in §§63.7(b) and (c) and compliance demonstrations.

§63.6650 What reports must I submit and when?

(a) You must submit each report in Table 7 of this subpart that applies to you.

(b) Unless the Administrator has approved a different schedule for submission of reports under §63.10(a), you must submit each report by the date in Table 7 of this subpart and according to the requirements in paragraphs (b)(1) through (b)(9) of this section.
(1) For semiannual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on June 30 or December 31, whichever date is the first date following the end of the first calendar half after the compliance date that is specified for your source in §63.6595.

(2) For semiannual Compliance reports, the first Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date follows the end of the first calendar half after the compliance date that is specified for your affected source in §63.6595.

(3) For semiannual Compliance reports, each subsequent Compliance report must cover the semiannual reporting period from January 1 through June 30 or the semiannual reporting period from July 1 through December 31.

(4) For semiannual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than July 31 or January 31, whichever date is the first date following the end of the semiannual reporting period.

(5) For each stationary RICE that is subject to permitting regulations pursuant to 40 CFR part 70 or 71, and if the permitting authority has established dates for submitting semiannual reports pursuant to 40 CFR 70.6(a)(3)(i)(A) or 40 CFR 71.6(a)(3)(iii)(A), you may submit the first and subsequent Compliance reports according to the dates the permitting authority has established instead of according to the dates in paragraphs (b)(1) through (b)(4) of this section.

(6) For annual Compliance reports, the first Compliance report must cover the period beginning on the compliance date that is specified for your affected source in §63.6595 and ending on December 31.

(7) For annual Compliance reports, the first Compliance report must be postmarked or delivered no later than January 31 following the end of the first calendar year after the compliance date that is specified for your affected source in §63.6595.

(8) For annual Compliance reports, each subsequent Compliance report must cover the annual reporting period from January 1 through December 31.

(9) For annual Compliance reports, each subsequent Compliance report must be postmarked or delivered no later than January 31.

(c) The Compliance report must contain the information in paragraphs (c)(1) through (6) of this section.

(1) Company name and address.

(2) Statement by a responsible official, with that official’s name, title, and signature, certifying the accuracy of the content of the report.

(3) Date of report and beginning and ending dates of the reporting period.

(4) If you had a malfunction during the reporting period, the compliance report must include the number, duration, and a brief description for each type of malfunction which occurred during the reporting period and which caused or may have caused any applicable emission limitation to be exceeded. The report must also include a description of actions taken by an owner or operator during a malfunction of an affected source to minimize emissions in accordance with §63.6605(b), including actions taken to correct a malfunction.

(5) If there are no deviations from any emission or operating limitations that apply to you, a statement that there were no deviations from the emission or operating limitations during the reporting period.

(6) If there were no periods during which the continuous monitoring system (CMS), including CEMS and CPMS, was out-of-control, as specified in §63.8(c)(7), a statement that there were no periods during which the CMS was out-of-control during the reporting period.

(d) For each deviation from an emission or operating limitation that occurs for a stationary RICE where you are not using a CMS to comply with the emission or operating limitations in this subpart, the Compliance report must contain the information in paragraphs (c)(1) through (4) of this section and the information in paragraphs (d)(1) and (2) of this section.
(1) The total operating time of the stationary RICE at which the deviation occurred during the reporting period.
(2) Information on the number, duration, and cause of deviations (including unknown cause, if applicable), as applicable, and the corrective action taken.
(e) For each deviation from an emission or operating limitation occurring for a stationary RICE where you are using a CMS to comply with the emission and operating limitations in this subpart, you must include information in paragraphs (c)(1) through (4) and (e)(1) through (12) of this section.
(1) The date and time that each malfunction started and stopped.
(2) The date, time, and duration that each CMS was inoperative, except for zero (low-level) and high-level checks.
(3) The date, time, and duration that each CMS was out-of-control, including the information in §63.8(c)(8).
(4) The date and time that each deviation started and stopped, and whether each deviation occurred during a period of malfunction or during another period.
(5) A summary of the total duration of the deviation during the reporting period, and the total duration as a percent of the total source operating time during that reporting period.
(6) A breakdown of the total duration of the deviations during the reporting period into those that are due to control equipment problems, process problems, other known causes, and other unknown causes.
(7) A summary of the total duration of CMS downtime during the reporting period, and the total duration of CMS downtime as a percent of the total operating time of the stationary RICE at which the CMS downtime occurred during that reporting period.
(8) An identification of each parameter and pollutant (CO or formaldehyde) that was monitored at the stationary RICE.
(9) A brief description of the stationary RICE.
(10) A brief description of the CMS.
(11) The date of the latest CMS certification or audit.
(12) A description of any changes in CMS, processes, or controls since the last reporting period.

The reports that must be maintained in accordance with the Subpart are stated in this section. The permittee is required to submit semi-annual Compliance reports (see Table 7 of the subpart for further details).

§63.6655 What records must I keep?
(a) If you must comply with the emission and operating limitations, you must keep the records described in paragraphs (a)(1) through (a)(5), (b)(1) through (b)(3) and (c) of this section.
(1) A copy of each notification and report that you submitted to comply with this subpart, including all documentation supporting any Initial Notification or Notification of Compliance Status that you submitted, according to the requirement in §63.10(b)(2)(xiv).
(2) Records of the occurrence and duration of each malfunction of operation (i.e., process equipment) or the air pollution control and monitoring equipment.
(3) Records of performance tests and performance evaluations as required in §63.19(b)(2)(viii).
(4) Records of all required maintenance performed on the air pollution control and monitoring equipment.
(5) Records of actions taken during periods of malfunction to minimize emissions in accordance with §63.6605(b), including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
(d) You must keep the records required in Table 6 of this subpart to show continuous compliance with each emission or operating limitation that applies to you.
(e) You must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that you operated and maintained the stationary RICE and after-treatment control device (if any) according to your own maintenance plan if you own or operate any of the following stationary RICE:

(1) An existing stationary RICE with a site rating of less than 100 brake HP located at a major source of HAP emissions.

(2) An existing stationary emergency RICE.

(3) An existing stationary RICE located at an area source of HAP emissions subject to management practices as shown in Table 2d to this subpart.

The permittee is required to maintain records of all required notifications, each malfunction, all performance tests and results, any required maintenance, and any corrective action that was taken.

§63.6660 In what form and how long must I keep my records?

(a) Your records must be in a form suitable and readily available for expeditious review according to §63.10(b)(1).

(b) As specified in §63.10(b)(1), you must keep each record for 5 years following the date of each occurrence, measurement, maintenance, corrective action, report, or record.

(c) You must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record, according to §63.10(b)(1).

All records must be kept by the permittee for a minimum of five (5) years for each record.

Permit Conditions Review

This section describes the permit conditions that have been added, revised, modified or deleted as a result of this permitting action.

Permit Condition 1.1 was revised to explain the revisions being made to the initial PTC.

Permit Condition 1.3 was added to indicate the PTC being replaced.

Table 1.1 was revised to include the new emission sources at the facility including two heater treaters, four additional line heaters, four additional water tanks, and one additional oil tank. The table was also revised to provide for a smaller compressor engine and dehydrator.

Table 2.1 was revised to include the new emission sources described above.

Permit Condition 3.1 was revised to describe the small compressor engine.

PUBLIC REVIEW

Public Comment Opportunity

Because this permitting action does not authorize an increase in emissions, an opportunity for public comment period was not required or provided in accordance with IDAPA 58.01.01.209.04 or IDAPA 58.01.01.404.04.
APPENDIX A – EMISSIONS INVENTORIES
Manufacturer's Rated Horsepower: 690 hp
Fuel Input: 0.007395 MMBtu/hr
Operating Schedule: 8760 hours annually

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Reference</th>
<th>Control Efficiency</th>
<th>FACTORS</th>
<th>EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>grams/MMBtu-hr</td>
<td>lb/MMBtu</td>
</tr>
<tr>
<td>NOx</td>
<td>Manuf. Engine Data</td>
<td>—</td>
<td>0.60</td>
<td>0.9110</td>
</tr>
<tr>
<td>CO</td>
<td>Manuf. Engine Data</td>
<td>40%</td>
<td>2.58</td>
<td>2.3527</td>
</tr>
<tr>
<td>VOC<sub>total</sub></td>
<td>Manuf. Engine Data</td>
<td>0%</td>
<td>0.55</td>
<td>0.8359</td>
</tr>
<tr>
<td>SO2</td>
<td>AP-42</td>
<td>—</td>
<td>0.0006</td>
<td>0.0100</td>
</tr>
<tr>
<td>PM10</td>
<td>AP-42</td>
<td>—</td>
<td>0.0200</td>
<td>0.1021</td>
</tr>
<tr>
<td>PM2.5</td>
<td>AP-42</td>
<td>—</td>
<td>0.0200</td>
<td>0.1021</td>
</tr>
<tr>
<td>HCHO</td>
<td>Manuf. Engine Data</td>
<td>25%</td>
<td>0.42</td>
<td>0.0528</td>
</tr>
<tr>
<td>Benzene</td>
<td>AP-42</td>
<td>0%</td>
<td>0.0016</td>
<td>0.0084</td>
</tr>
<tr>
<td>Toluene</td>
<td>AP-42</td>
<td>0%</td>
<td>0.0006</td>
<td>0.0028</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>AP-42</td>
<td>0%</td>
<td>0.0000</td>
<td>0.0002</td>
</tr>
<tr>
<td>Xylene</td>
<td>AP-42</td>
<td>0%</td>
<td>0.0002</td>
<td>0.0010</td>
</tr>
</tbody>
</table>

Example Calculations:
NOx: \(((0.6 \text{ grams/MMBtu-hr})(690 \text{ bhp})) / (1454) = 0.9119 \text{ lbs/hr} \)
NOx: \((0.91 \text{ lbs/hr})(8760 \text{ hrs/yr})/2000 = 3.96 \text{ TPY} \)

Calculation Notes:
Engine Data based on AP-42 Section 3.2, Manufacturer Engine Data Sheets

Speciation Table

<table>
<thead>
<tr>
<th>Component</th>
<th>Mol%</th>
<th>Mol%K</th>
<th>Ratemol</th>
<th>W%</th>
<th>Percentage</th>
<th>EMISSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lbs/hr</td>
<td>TPY</td>
<td>Speciation</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>10.043</td>
<td>84.0551</td>
<td>13.613</td>
<td>66.981</td>
<td>67.0%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>28.013</td>
<td>0.4883</td>
<td>0.137</td>
<td>0.673</td>
<td>0.7%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>44.51</td>
<td>0.1433</td>
<td>0.063</td>
<td>0.310</td>
<td>0.4%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Ethane</td>
<td>30.07</td>
<td>6.2131</td>
<td>1.868</td>
<td>0.162</td>
<td>0.2%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>34.08</td>
<td>0.0000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.0%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Propane</td>
<td>44.097</td>
<td>4.0260</td>
<td>1.773</td>
<td>8.724</td>
<td>8.7%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Isobutane</td>
<td>58.124</td>
<td>0.9324</td>
<td>0.544</td>
<td>2.696</td>
<td>2.7%</td>
<td>0.0000</td>
</tr>
<tr>
<td>N-Butane</td>
<td>58.124</td>
<td>1.5751</td>
<td>0.926</td>
<td>4.556</td>
<td>4.5%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Isopentane</td>
<td>72.151</td>
<td>0.5374</td>
<td>0.388</td>
<td>1.958</td>
<td>1.9%</td>
<td>0.0000</td>
</tr>
<tr>
<td>N-Pentane</td>
<td>72.151</td>
<td>0.5433</td>
<td>0.398</td>
<td>1.926</td>
<td>1.9%</td>
<td>0.0000</td>
</tr>
<tr>
<td>N-Nexane</td>
<td>86.07</td>
<td>0.2246</td>
<td>0.194</td>
<td>0.952</td>
<td>1.0%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Cyclohexane</td>
<td>84.16</td>
<td>0.0342</td>
<td>0.029</td>
<td>0.142</td>
<td>0.1%</td>
<td>0.0002</td>
</tr>
<tr>
<td>Heptanes</td>
<td>100.21</td>
<td>0.1201</td>
<td>0.120</td>
<td>0.592</td>
<td>0.6%</td>
<td>0.0040</td>
</tr>
<tr>
<td>Methylene Cyanide</td>
<td>96.17</td>
<td>0.0866</td>
<td>0.086</td>
<td>0.126</td>
<td>0.1%</td>
<td>0.0011</td>
</tr>
<tr>
<td>2,4,4-trimethylpentane</td>
<td>114.22</td>
<td>0.0068</td>
<td>0.008</td>
<td>0.039</td>
<td>0.0%</td>
<td>0.0003</td>
</tr>
<tr>
<td>Benzene</td>
<td>78.14</td>
<td>0.0035</td>
<td>0.003</td>
<td>0.013</td>
<td>0.0%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Toluene</td>
<td>92.14</td>
<td>0.0021</td>
<td>0.002</td>
<td>0.010</td>
<td>0.0%</td>
<td>0.0001</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>106.17</td>
<td>0.0003</td>
<td>0.000</td>
<td>0.002</td>
<td>0.0%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Xylenes</td>
<td>106.16</td>
<td>0.0005</td>
<td>0.001</td>
<td>0.003</td>
<td>0.0%</td>
<td>0.0000</td>
</tr>
<tr>
<td>Hexanes +</td>
<td>92.12</td>
<td>0.2421</td>
<td>0.223</td>
<td>1.097</td>
<td>1.1%</td>
<td>0.0092</td>
</tr>
<tr>
<td>C8-Heavens</td>
<td>96.09</td>
<td>0.0290</td>
<td>0.028</td>
<td>0.137</td>
<td>0.1%</td>
<td>0.0011</td>
</tr>
</tbody>
</table>

\[\text{Notes:} \]
Gas Analysis - Questar Applied Technology, 1/3/2013, ML Investments 1-10
TEG Dehydration Unit
Operating Schedule: 8760 hours annually
Throughput (MMSCFD) 20

<table>
<thead>
<tr>
<th>Components</th>
<th>Control Factor</th>
<th>lb/hr ER</th>
<th>Annual (TPY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEHY1</td>
<td>98.0%</td>
<td>0.3682</td>
<td>1.6125</td>
</tr>
</tbody>
</table>

*Emissions were calculated using GRI-GLYCalc 4.0.

<table>
<thead>
<tr>
<th>Emissions Speciation</th>
<th>lbs/hr</th>
<th>Tons/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.0013</td>
<td>0.0056</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0006</td>
<td>0.0026</td>
</tr>
<tr>
<td>Ethybenzene</td>
<td>0.0001</td>
<td>0.0003</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.0001</td>
<td>0.0005</td>
</tr>
<tr>
<td>Pollutant</td>
<td>Emission Factor (lb/MMCF)</td>
<td>Reference</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>AP-42</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>AP-42</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>AP-42</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>7.6</td>
<td>AP-42</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>5.7</td>
<td>AP-42</td>
</tr>
<tr>
<td>SO$_2$</td>
<td>0.6</td>
<td>AP-42</td>
</tr>
<tr>
<td>HCHO</td>
<td>0.075</td>
<td>AP-42</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0021</td>
<td>AP-42</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0034</td>
<td>AP-42</td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.
<table>
<thead>
<tr>
<th>EPN: LNHTR1-6</th>
<th>Pollutant</th>
<th>Emission Factor (lb/MMCFC)</th>
<th>Reference</th>
<th>lb/yr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>0.0201</td>
<td>AP-42</td>
<td>0.0881</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>0.3659</td>
<td>AP-42</td>
<td>1.0224</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.3073</td>
<td>AP-42</td>
<td>1.3460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>0.0278</td>
<td>AP-42</td>
<td>0.1218</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>0.0291</td>
<td>AP-42</td>
<td>0.0913</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>0.0022</td>
<td>AP-42</td>
<td>0.0096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCHO</td>
<td>0.0027</td>
<td>AP-42</td>
<td>0.0012</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0001</td>
<td>AP-42</td>
<td>0.0003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0031</td>
<td>AP-42</td>
<td>0.0014</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.

<table>
<thead>
<tr>
<th>EPN: LNHTR 7</th>
<th>Pollutant</th>
<th>Emission Factor (lb/MMCFC)</th>
<th>Reference</th>
<th>lb/yr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>0.0222</td>
<td>AP-42</td>
<td>0.0096</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>0.0407</td>
<td>AP-42</td>
<td>0.1780</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0341</td>
<td>AP-42</td>
<td>0.1496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>0.0031</td>
<td>AP-42</td>
<td>0.0135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>0.0023</td>
<td>AP-42</td>
<td>0.0101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>0.0002</td>
<td>AP-42</td>
<td>0.0011</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCHO</td>
<td>0.0000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.

<table>
<thead>
<tr>
<th>EPN: LNHTR 8-10</th>
<th>Pollutant</th>
<th>Emission Factor (lb/MMCFC)</th>
<th>Reference</th>
<th>lb/yr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>0.0134</td>
<td>AP-42</td>
<td>0.0588</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>0.2439</td>
<td>AP-42</td>
<td>1.0683</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.2049</td>
<td>AP-42</td>
<td>0.8974</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>10</sub></td>
<td>0.0185</td>
<td>AP-42</td>
<td>0.0812</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PM<sub>2.5</sub></td>
<td>0.0139</td>
<td>AP-42</td>
<td>0.0609</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SO<sub>2</sub></td>
<td>0.0015</td>
<td>AP-42</td>
<td>0.0064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCHO</td>
<td>0.0002</td>
<td>AP-42</td>
<td>0.0008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.
<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/MMCF)</th>
<th>Reference</th>
<th>lb/hr</th>
<th>tpy</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>AP-42</td>
<td>0.0112</td>
<td>0.0490</td>
<td>0.0112</td>
<td>0.0490</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>AP-42</td>
<td>0.2033</td>
<td>0.8902</td>
<td>0.2033</td>
<td>0.8902</td>
</tr>
<tr>
<td>CO</td>
<td>84</td>
<td>AP-42</td>
<td>0.1707</td>
<td>0.7478</td>
<td>0.1707</td>
<td>0.7478</td>
</tr>
<tr>
<td>PM_{10}</td>
<td>7.6</td>
<td>AP-42</td>
<td>0.0154</td>
<td>0.0677</td>
<td>0.0154</td>
<td>0.0677</td>
</tr>
<tr>
<td>PM_{2.5}</td>
<td>5.7</td>
<td>AP-42</td>
<td>0.0116</td>
<td>0.0507</td>
<td>0.0116</td>
<td>0.0507</td>
</tr>
<tr>
<td>SO_{2}</td>
<td>0.6</td>
<td>AP-42</td>
<td>0.0012</td>
<td>0.0053</td>
<td>0.0012</td>
<td>0.0053</td>
</tr>
<tr>
<td>HCHO</td>
<td>0.075</td>
<td>AP-42</td>
<td>0.000152</td>
<td>0.0000568</td>
<td>0.0002</td>
<td>0.0007</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0021</td>
<td>AP-42</td>
<td>0.000004</td>
<td>0.0000039</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0034</td>
<td>AP-42</td>
<td>0.000007</td>
<td>0.000030</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.
EPN: HTRTR1

<table>
<thead>
<tr>
<th>Name/Type</th>
<th>Heater Treater</th>
<th>Heater Rating (MMBtu/hr)</th>
<th>8760</th>
<th>Operating Hours</th>
<th>8760</th>
<th>Fuel Heat Value (Btu/SCF)</th>
<th>1230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lineheaters</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/MMOCF)</th>
<th>Reference</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>0.0045</td>
<td>AP-42</td>
<td>0.0196</td>
<td></td>
</tr>
<tr>
<td>NOx</td>
<td>0.0813</td>
<td>AP-42</td>
<td>0.3561</td>
<td></td>
</tr>
<tr>
<td>CO</td>
<td>0.0683</td>
<td>AP-42</td>
<td>0.2991</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.0062</td>
<td>AP-42</td>
<td>0.0036</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0046</td>
<td>AP-42</td>
<td>0.0023</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>0.0006</td>
<td>AP-42</td>
<td>0.0021</td>
<td></td>
</tr>
<tr>
<td>HCHO</td>
<td>0.30006</td>
<td>AP-42</td>
<td>0.0003</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.30000</td>
<td>AP-42</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.30000</td>
<td>AP-42</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.

EPN: HTRTR2

<table>
<thead>
<tr>
<th>Name/Type</th>
<th>Heater Treater</th>
<th>Heater Rating (MMBtu/hr)</th>
<th>2.5</th>
<th>Operating Hours</th>
<th>8760</th>
<th>Fuel Heat Value (Btu/SCF)</th>
<th>1230</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Lineheaters</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/MMOCF)</th>
<th>Reference</th>
<th>lb/hr</th>
<th>tpy</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOC</td>
<td>5.5</td>
<td>AP-42</td>
<td>0.0112</td>
<td>0.0490</td>
</tr>
<tr>
<td>NOx</td>
<td>100</td>
<td>AP-42</td>
<td>0.2033</td>
<td>0.8902</td>
</tr>
<tr>
<td>CO</td>
<td>0.1707</td>
<td>AP-42</td>
<td>0.7478</td>
<td></td>
</tr>
<tr>
<td>PM10</td>
<td>0.0154</td>
<td>AP-42</td>
<td>0.0677</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>0.0116</td>
<td>AP-42</td>
<td>0.0507</td>
<td></td>
</tr>
<tr>
<td>SO2</td>
<td>0.0012</td>
<td>AP-42</td>
<td>0.0053</td>
<td></td>
</tr>
<tr>
<td>HCHO</td>
<td>0.0002</td>
<td>AP-42</td>
<td>0.0007</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>0.0000</td>
<td></td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Natural Gas Combustion Factor Data based on AP-42, Table 1.4-1 - 1.4.3.
EPN: OILTNK1

Oil Tank E&P Calculations
Operating Schedule: 8760 hours annually

<table>
<thead>
<tr>
<th>Control Efficiency</th>
<th>98%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughput (BOPD)</td>
<td>1000</td>
</tr>
<tr>
<td>Tank Count</td>
<td>6</td>
</tr>
</tbody>
</table>

TANKS

<table>
<thead>
<tr>
<th>Size</th>
<th>BOPD</th>
<th>lb/hr ER</th>
<th>Annual (TPY)</th>
<th>lb/hr ER</th>
<th>Annual (TPY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>400 bbl</td>
<td>166.6</td>
<td>27.437</td>
<td>120.175</td>
<td>0.5487</td>
<td>2.4035</td>
</tr>
</tbody>
</table>

Total VOCs of All Tanks: 3.2924, 14.4210

Emissions Speciation

<table>
<thead>
<tr>
<th>Emissions Speciation</th>
<th>lbs/hr</th>
<th>Tons/yr</th>
<th>Controlled Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzene</td>
<td>0.018</td>
<td>0.078</td>
<td>0.0022, 0.0094</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.02</td>
<td>0.086</td>
<td>0.0024, 0.0103</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.005</td>
<td>0.02</td>
<td>0.0006, 0.0024</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.015</td>
<td>0.065</td>
<td>0.0018, 0.0078</td>
</tr>
</tbody>
</table>
Water Tank E&P Calculations
Operating Schedule: 8760 hours annually
Control Efficiency 0%
Throughput (BWPD) 500
Tank Count 6

<table>
<thead>
<tr>
<th>TANKS</th>
<th>EMISSIONS</th>
<th>EMISSIONS-CONTROLLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>BWPD</td>
<td>lb/hr ER</td>
</tr>
<tr>
<td>400 bbl</td>
<td>83.4</td>
<td>14,165</td>
</tr>
</tbody>
</table>

Total VOCs for All Tanks 0.8499 3.7214

*Emissions calculated using 1% of emissions represented from condensate analysis

<table>
<thead>
<tr>
<th>Emissions Speciation</th>
<th>lbs/hr</th>
<th>Tons/yr</th>
<th>Controlled Emissions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lbs/hr</td>
<td>Tons/yr</td>
<td>lbs/hr</td>
</tr>
<tr>
<td>Benzene</td>
<td>0.009</td>
<td>0.041</td>
<td>0.0005</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.011</td>
<td>0.046</td>
<td>0.0007</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>0.003</td>
<td>0.011</td>
<td>0.0002</td>
</tr>
<tr>
<td>Xylenes</td>
<td>0.008</td>
<td>0.035</td>
<td>0.0005</td>
</tr>
</tbody>
</table>
Tank Truck Loading Emissions

<table>
<thead>
<tr>
<th>Daily Loading</th>
<th>1000 bbl/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Loadout Amount</td>
<td>15330 Mga/yr</td>
</tr>
<tr>
<td>Maximum Gallons per Hour</td>
<td>5000 gal/hr</td>
</tr>
<tr>
<td>Control Efficiency</td>
<td>98%</td>
</tr>
</tbody>
</table>

Saturation Factor (Submerged Dedicated): 0.6
* True Vapor Pressure of Liquid Loaded: 9.00 psia
* Molecular Weight of Vapors: 50
Temperature (°F) @ 80F: 540

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/1000gal)*</th>
<th>Reference</th>
<th>Control Efficiency</th>
<th>EMISSIONS Annual (TPY)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCtotal</td>
<td>6.23</td>
<td>AP-42</td>
<td></td>
<td>0.955</td>
</tr>
</tbody>
</table>

Example Calculations:
VOC: \((12.46\times[(S\times P\times M)/(T,540)]\times(Mg/yr)/2000 = VOC TPY\)

Saturation Factor (Submerged Dedicated): 0.6
* True Vapor Pressure of Liquid Loaded: 9.00 psia
* Molecular Weight of Vapors: 50
Temperature (°F) @ 100F: 540

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor (lb/1000gal)*</th>
<th>Reference</th>
<th>Control Efficiency</th>
<th>Short Term Emissions lb/hr</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOCtotal</td>
<td>6.23</td>
<td>AP-42</td>
<td></td>
<td>0.6230</td>
</tr>
</tbody>
</table>

Example Calculations:
VOC: \((12.46\times[(S\times P\times M)/(T,540)]\times(Mg/yr) = VOC lb/hr\)

* Emissions were calculated using AP-42, Table 5.2.5
* Input data from Fesco Analysis 7-2-09
* Vapor Pressure - AP42 - Table 7.1-2
Little Willow Road Gathering Facility - GHG Emission Summary

Version: 12/30/2015

<table>
<thead>
<tr>
<th>GHG Pollutant</th>
<th>Compressor Engine</th>
<th>Reboiler</th>
<th>Vapor Combustor</th>
<th>Line Heaters</th>
<th>Heater Treater</th>
<th>Emission Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENG1</td>
<td>RBLR1</td>
<td>VPCOMB1</td>
<td>LNHT1-10</td>
<td>HTRTR1-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric Ton CO2e</td>
<td></td>
</tr>
<tr>
<td>CO2</td>
<td>2369.906</td>
<td>116.1138</td>
<td>1161.1380</td>
<td>3715.6416</td>
<td>1625.5932</td>
<td>8988.3925</td>
</tr>
<tr>
<td>CH4</td>
<td>0.9387</td>
<td>0.0460</td>
<td>0.4599</td>
<td>1.4717</td>
<td>0.6439</td>
<td>3.5601</td>
</tr>
<tr>
<td>N2O</td>
<td>1.3856</td>
<td>0.0679</td>
<td>0.6789</td>
<td>2.1725</td>
<td>0.9505</td>
<td>5.2554</td>
</tr>
</tbody>
</table>

Total GHG Metric Ton CO2e: 8997.21
EPN: ENG1
Compressor Engine

<table>
<thead>
<tr>
<th>Manufacturer’s Rated Horsepower</th>
<th>690 hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel Input</td>
<td>0.007395 MMBtu/hp-hr</td>
</tr>
<tr>
<td>Operating Schedule</td>
<td>8750 hrs/yr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Global Warming Potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CH4</td>
</tr>
<tr>
<td></td>
<td>N2O</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Reference</th>
<th>Control Efficiency</th>
<th>Emission Factors</th>
<th>Factor Units</th>
<th>Short Term Emissions (kg/hr)</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>EPA GHG Factors</td>
<td>-----</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>270.5372</td>
<td>2369905.9</td>
<td>2369.9</td>
</tr>
<tr>
<td>CH4</td>
<td>EPA GHG Factors</td>
<td>-----</td>
<td>0.001</td>
<td>kg/mmBtu</td>
<td>0.0051</td>
<td>44.70</td>
<td>0.9387</td>
</tr>
<tr>
<td>N2O</td>
<td>EPA GHG Factors</td>
<td>-----</td>
<td>0.0001</td>
<td>kg/mmBtu</td>
<td>0.0005</td>
<td>4.47</td>
<td>1.3856</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA’s GHG Published Emission Factors(11/7/2011)
Pollutant Emission Calculations

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>116,113.80</td>
<td>116.1138</td>
</tr>
<tr>
<td>CH4</td>
<td>0.001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>2.19</td>
<td>0.0460</td>
</tr>
<tr>
<td>N2O</td>
<td>0.0001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>0.22</td>
<td>0.0679</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA's GHG Published Emission Factors (11/7/2011)
Global Warming Potentials

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>1,161,138.00</td>
<td>1161.1380</td>
</tr>
<tr>
<td>CH4</td>
<td>0.001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>21.90</td>
<td>0.4599</td>
</tr>
<tr>
<td>N2O</td>
<td>0.0001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>2.19</td>
<td>0.6789</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA's GHG Published Emission Factors (11/7/2011)
EPN: LNHTR1-6

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
<th>Total Metric Ton CO2e at 7 lineheaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>348,341.40</td>
<td>348.3414</td>
<td>2090.0484</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>6.57</td>
<td>0.1380</td>
<td>0.8278</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.0001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>0.66</td>
<td>0.2037</td>
<td>1.2220</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA’s GHG Published Emission Factors(11/7/2011)

EPN: LNHTR7

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
<th>Total Metric Ton CO2e at 7 lineheaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>232,227.60</td>
<td>232.2276</td>
<td>232.2276</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>4.38</td>
<td>0.0920</td>
<td>0.0920</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.0001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>0.44</td>
<td>0.1358</td>
<td>0.1358</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA’s GHG Published Emission Factors(11/7/2011)

EPN: LNHTR8-10

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
<th>Total Metric Ton CO2e at 7 lineheaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>53.02</td>
<td>kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>464,455.20</td>
<td>464.4552</td>
<td>1393.3656</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>8.76</td>
<td>0.1840</td>
<td>0.5519</td>
</tr>
<tr>
<td>N₂O</td>
<td>0.0001</td>
<td>Kg/mmBtu</td>
<td>EPA GHG Factors</td>
<td>0.68</td>
<td>0.2716</td>
<td>0.8147</td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA’s GHG Published Emission Factors(11/7/2011)
EPN: HTRTR1

Name/Type: Heate Treater

<table>
<thead>
<tr>
<th>Heater Rating (mmBtu/hr)</th>
<th>Operating Hours</th>
<th>mmBtu/yr</th>
<th>Fuel Heat Value (Btu/SCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8760</td>
<td>8760</td>
<td>1230</td>
</tr>
</tbody>
</table>

Global Warming Potentials

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
<th>Total Metric Ton CO2e at 7 lineheaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td>310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA's GHG Published Emission Factors(11/7/2011)

EPN: HTRTR1

Name/Type: Heate Treater

<table>
<thead>
<tr>
<th>Heater Rating (mmBtu/hr)</th>
<th>Operating Hours</th>
<th>mmBtu/yr</th>
<th>Fuel Heat Value (Btu/SCF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>8760</td>
<td>21900</td>
<td>1230</td>
</tr>
</tbody>
</table>

Global Warming Potentials

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emission Factor</th>
<th>Factor Units</th>
<th>Reference</th>
<th>Annual Emissions (kg/yr)</th>
<th>Metric Ton CO2e</th>
<th>Total Metric Ton CO2e at 7 lineheaters</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N2O</td>
<td>310</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculation Notes:
Factor Data based on EPA's GHG Published Emission Factors(11/7/2011)
The following comments were received from the facility on January 28, 2016:

Facility Comment: The dehydrator control efficiency should be changed to 98% as demonstrated in the emission calculations.

DEQ Response: The requested change has been made.
APPENDIX C – PROCESSING FEE
PTC Fee Calculation

Instructions:
Fill in the following information and answer the following questions with a Y or N. Enter the emissions increases and decreases for each pollutant in the table.

Company: Alta Mesa Services, LP
Address: 4649 Little Willow Rd.
City: New Plymouth
State: ID
Zip Code: 83655
Facility Contact: Jennie Kent
Title: Petroleum Engineer
AIRS No.: 075-00022

N	Does this facility qualify for a general permit (i.e. concrete batch plant, hot-mix asphalt plant)? Y/N
Y	Did this permit require engineering analysis? Y/N
N	Is this a PSD permit Y/N (IDAPA 58.01.01.205.04)

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Annual Emissions Increase (T/yr)</th>
<th>Annual Emissions Reduction (T/yr)</th>
<th>Annual Emissions Change (T/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOx</td>
<td>0.0</td>
<td>0.2</td>
<td>-0.2</td>
</tr>
<tr>
<td>SO2</td>
<td>0.0</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>CO</td>
<td>0.0</td>
<td>2.2</td>
<td>-2.2</td>
</tr>
<tr>
<td>PM10</td>
<td>0.0</td>
<td>0.35</td>
<td>-0.4</td>
</tr>
<tr>
<td>VOC</td>
<td>0.0</td>
<td>3.81</td>
<td>-3.8</td>
</tr>
<tr>
<td>TAPS/HAPS</td>
<td>0.0</td>
<td>0.62</td>
<td>-0.6</td>
</tr>
<tr>
<td>Total:</td>
<td>0.0</td>
<td>7.19</td>
<td>-7.2</td>
</tr>
</tbody>
</table>

Fee Due $ 1,000.00

Comments: